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In sonic models of special relativity, the fact that the sonic medium violates (ordinary) Lorentz symmetry
is apparent to observers external to the sonic medium but not to a class of observers existing within the
medium itself. We show that the situation is symmetric: internal observers will judge physics in the external
laboratory to violate their own sonic Lorentz symmetries. We therefore treat all observers on an equal
footing such that each is able to retain a commitment to their own Lorentz symmetries. We then generalize
beyond the case of subsystem-environment decompositions to situations in which there exist multiple
phonon fields, all obeying Lorentz symmetries but with different invariant speeds. In such cases, we argue
that all observers have freedom to choose which field is symmetry preserving, and so—in a certain precise
sense—which other fields are perceived as having an “ether.” This choice is influenced, but not determined,
by a desire for simplicity in the description of physical laws. Sending information faster than sound serves
as a model of tachyonic signaling to a distant receiver. Immutable causality of the laboratory setup when
perceived externally to a sonic medium manifests internally through the confinement of the tachyons to an
apparent ether (with a rest frame), which we call a “tachyonic medium,” thereby preventing tachyonic
exchange from emulating the scenario of a round-trip signal traveling into an observer’s past causal cone.
The assignment of sonic-Lorentz-violating effects to fields that obey “photonic” Lorentz symmetries thus
ensures that causality associated with the “sonic” Lorentz symmetries is preserved.
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I. INTRODUCTION

It is well-known that distinct physical systems can
behave in similar ways. Consider, for example, the fact
that the same mathematics can be used to model an
oscillating spring as an LC circuit [1]. In this article, we
further explore the fact (already investigated in recent
works such as [2–5]) that the mathematical structure of
Minkowski spacetime does not depend upon the exchange
of light signals specifically but rather that many distinct
physical systems and phenomena manifest Lorentz sym-
metries, albeit with potentially different invariant speeds
(e.g., the speed of light versus speed of sound).
Relativistic analogies—that is, models that are

explicitly nonrelativistic but that nonetheless capture some
of the phenomenology of relativistic systems—have been

well-explored in the literature in recent years, though
usually in the context of general relativity. Such models
are referred to as analog gravity models1 and are often
considered to have originated in the work of Unruh [6]
(though earlier models, such as that of Gordon [7], can
rightly be described as analog gravity models). The review
article by Barceló et al. [8] provides a thorough overview of
the analog gravity research endeavor as of 2011, and some
of the important developments between 2011 and 2020 are
discussed by Jacquet et al. [9].
While analog gravity models are interesting—and

potentially of great utility—in their own right, they are
not explicitly the focus of our investigations. We wish to
understand which aspects of relativistic physics are in
principle emergent (and thus, in principle, could be captured
by an analog model) and which aspects of relativistic physics
are fundamental (and thus, cannot, even in principle, be
captured by an analog model). In essence, we wish to
understand how far analog models of relativistic physics
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(such as analog-gravity models) can be pushed. The answer
to such a question is not always obvious. For example, one
recent study concludes that, despite the laboratory physics
displaying an underlying Minkowskian (or Galilean) causal
structure, simulation of some spacetimes with closed-
timelike curves is possible in analog models [10].
This current work is preceded by Refs. [2,3], in which the

behavior of sonically relativistic systems was analyzed
through reference to an external environment (the lab)—
in which information can propagate at the speed of light—
and an acoustic subsystem (the sonic medium) consisting
of a solid or fluid. Internal to the acoustic subsystem, sound
pulses can be thought to take the place of light signals, and
thus, experiments analogous to those performed with light in
special relativity can be performed with sound pulses. For
example, the passage of time can be measured using sound
clocks, and thus the effects of relative motion on temporal
measurements can be investigated. We refer to observers
embedded within an acoustic subsystem as internal observ-
ers and ordinary observers in the lab as external observers.
It was shown in Ref. [3] that internal observers who perform
experiments that measure lengths and durations via the
exchange of phonons2 will observe length contraction and
time dilation as described by the usual formulas from special
relativity in a spacetime in which Lorentz invariance is
obeyed but with the speed of sound cs replacing the speed of
light c in the Lorentz factor; hence,

γs ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2s

q : ð1:1Þ

Particle scattering from the perspective of such observers
was investigated in [4], wherein a toy model of scattering
between phonons and two different types of particle was
considered. The first type of particle obeyed a sonically
relativistic energy-momentum relation, whereas the second
type of particle was described by a Newtonian energy-
momentum relation. While not unexpected, it was demon-
strated that—within the constraints of the toy model—the
scattering profile of phonons from sonically relativistic
particles is insensitive to the absolute state of motion of
the experimental apparatus with respect to the medium
itself. Conversely, the scattering profile of phonons from
Newtonian (i.e., sonic-Lorentz-violating) particles is sen-
sitive to the absolute state of motion with respect to the
experimental apparatus and thus—in principle—can reveal
information about the medium’s rest frame.3 Note that in

Ref. [4], the actual physical mechanism behind the scatter-
ing interaction was not considered explicitly, and the nature
of the two types of particle under consideration was left
unspecified beyond their respective energy-momentum
relations. Other works exist in the literature, however,
regarding particle scattering in analog models, one such
work being the article by Fischer and Visser in which an
explicit model is constructed for the particles from which
phonons are scattered [11].
Our goal in the remainder of this article is to further

explore physics from the point of view of observers internal
to the sonic medium and observers external to it. In Sec. II,
we define a class of internal observers who measure the
speed of sound in their medium to be an invariant and thus
whose measurements of lengths and duration respect a
sonic Lorentz symmetry. In Secs. III–IV, we discuss how a
given physical system (in terms of Lagrangians) might
be described from internal and external perspectives. In
Secs. IV and V, we argue that the descriptions from each
of these settings should be considered as being on an equal
footing, and we consider the ramifications of this. In
Secs. VI and VII, we raise and resolve some concerns
regarding causal paradoxes and (the analog of) super-
luminal signaling presented by the preceding work in
Refs. [2,3]. In so doing, we introduce the concept of a
tachyonic medium as a phenomenon seen by internal
observers. We close in Sec. VIII.

II. INTERNAL OBSERVERS

We mentioned above that observers internal to a given
medium will regard the speed of sound in that medium as
an invariant, leading to time dilation and length contraction
effects (and thus, all of the kinematic behavior associated
with special relativity). The observers we wish to consider
here will consequently be unaware of the existence of a
preferred rest frame for their own medium—and hence the
existence of the medium itself—and will conceive of their
medium as a special-relativistic Minkowski spacetime with
physical laws based upon their own sonic Lorentz trans-
formations (cf. Ref. [12], page 174). The reader may
already object at this point on the grounds that an observer
can perform a Michelson-Morley experiment to detect that
the signals they send and receive are supported by a
medium. This is true for some classes of observers but
not all [5]. We therefore introduce the following three
categories of observers for consideration:
(1) Observers composed of ordinary fermionic matter

(as would exist in the laboratory), using clocks
and rulers of fixed scale, also made of the same
fermionic matter.

(2) Observers restricted to using sound clocks and rulers
composed of fermionic matter but dynamically
establishing the scale between their sound clocks
and rulers using sound pulses, so as to keep clocks

2In Ref. [3], internal observers were dubbed in-universe
observers.

3As we will show throughout the rest of this article, the use
here of the qualifier “in principle” can be viewed as the starting
point of this current investigation. We will demonstrate that
internal observers can, in fact, draw a different conclusion from
experiments involving sonic-Lorentz-violating phenomena.

SUNDANCE O. BILSON-THOMPSON et al. PHYS. REV. D 108, 124020 (2023)

124020-2



synchronized within their own rest frame (for an
explicit illustration of this case, see Ref. [3]).

(3) Observers restricted to using clocks and rulers
composed of quasiparticle excitations of the sonic
medium or those of another medium at rest with
respect to the first one and having the same speed of
sound (see Ref. [13]).

A crucial part of the Michelson-Morley experiment
involves rotating the apparatus to ensure that its dimensions
and initial orientation did not accidentally cancel out any
evidence of motion through the “ether.” This will indeed be
effective for observers of type 1. However, if the observers
and their apparatus are composed of quasiparticles—i.e.,
they are of type 3 above—such that the “acoustic atoms” of
which they are composed are bound together by acoustic
analogs of electrostatic forces (and themselves have a
sonic-relativistic dispersion relation), then any direction-
dependent modification of the rate at which sounds
propagate will be impossible to detect [13]. This echoes
the idea of Heaviside that the equipotential surfaces of
charges moving through an ether would be distorted into
ellipsoids, for in this case there really is a medium to
support the forces holding acoustic atoms together to form
(macroscopic) acoustic objects [14]. Similarly, for observ-
ers of type 2, dynamically establishing length scales by the
exchange of phonons will ensure that rotating their appa-
ratus does not detect any direction-dependent effect and,
hence, will not detect the existence of a preferred rest frame
within that medium [3]. Henceforth, we shall restrict our
attention to observers of types 2 and 3 and refer to such
observers as “internal observers” to a given sonic medium.
For the sake of brevity and generality when talking about

the speed of light, or the speed of sound in different media,
we will refer to the Lorentz-invariant speed (LIS) associ-
ated with a particular Lorentz group. The usual Lorentz
symmetry of the Standard Model has a LIS of c (the speed
of light), while internal observers will perceive a LIS of cs
(the speed of sound).
In ordinary physics, the LIS also plays the role of a

universal upper speed limit. We choose not to emphasize
this interpretation because the internal observers’ LIS of cs
will not necessarily be an upper limit on the speed of
particles or excitations in different media or the lab since
these may obey Lorentz symmetries with LISs different
from cs. (This point is also made in Sec. 5.4 of Ref. [5].)
Note, however, that an object traveling faster or slower
than a given LIS will remain as such, respectively, to all
observers with that same LIS. That is to say, if some
observer with a given LIS measures an object to have a
velocity higher or lower than their own LIS, then all other
observers with the same LIS will also measure its velocity
to be higher or lower, respectively, than the LIS (though not
necessarily with the same value, due to the Lorentz trans-
formation of observers’ coordinates). This point is essen-
tially made in Ref. [15], in which it is demonstrated on

geometric grounds that “the tachyon beam can take on any
velocity outside the interval from −c to þc relative to a
suitably chosen frame.” It should be borne in mind that
this is a consequence of the internal observer boosting
between different reference frames, not a restriction on
how a particle external to the sonic medium may change
its motion.

III. LAGRANGIANS FROM INTERNAL AND
EXTERNAL PERSPECTIVES

To begin, we will consider a given particle as witnessed
by both internal observers (i.e., those native to the medium;
discussed above) and by external observers (i.e., those in
the laboratory). Later, we will consider separate particles in
two different acoustic media, each obeying a distinct LIS.

A. External particle described
by an external observer

The Lagrangian for an external particle, i.e., one obey-
ing regular relativity (LIS of c), as viewed by an external
observer is simply

Lex ¼
1

2

�
ημν∂μϕ∂νϕþm2c2

ℏ2
ϕ2

�
; ð3:1Þ

where xμ¼ðct; x; y; zÞ are the usual laboratory coordinates,
which we denote by standard Greek indices, and we use the
ordinary Minkowski inverse metric ημν ¼ diagð−1;þ1;
þ1;þ1Þ, when written in these coordinates, where diag
indicates a diagonal matrix. To be clear, the subscript “ex”
indicates the particle type, not the observer describing it.
This labeling will be important when we ask how internal
observers would view the same particle.
Notice that the coefficient of ϕ2 explicitly includes the

appropriate fundamental constants, revealing it to be the
square of the Compton wave number for the particle,

kC ≔
2π

λC
¼ mc

ℏ
; ð3:2Þ

where λC ¼ h=mc is the Compton wavelength associated
with the excitations of the field ϕ. Thus, what is usually
called the “mass term” is correctly interpreted as a term
k2Cϕ

2 that defines a characteristic length λC associated with
the field, rather than a characteristic mass. (In fact, this is
what is always meant by “m2ϕ2” in quantum field theory
once the attendant factor of c2=ℏ2 is made explicit.) Since
kC has units of inverse distance, both terms in L have the
same units, which is a good sanity check.
We choose to write Lagrangians using kC instead of

mc=ℏ because different masses may be extracted from
the same kC depending upon whether one uses c to relate it
to mass (as above) or whether one uses cs in this role
instead. While the former is the right choice for an
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external observer, internal observers have good reason to
use the latter [4].
As such, we have

Lex ¼
1

2
ðημν∂μϕ∂νϕþ k2C;exϕ

2Þ ð3:3Þ

for an external particle as viewed by an external observer.

B. Internal particle described by an internal observer

We model internal particles as phonons within a
material; these are so-named because they are the natural
particles that would be observed by internal observers. In
crafting our model of a sound-carrying material (i.e., a
sonic medium), we restrict ourselves to an idealization of
an ordinary material that might be present in a laboratory.
As such, we may use ordinary Newtonian physics to
describe its dynamics. Despite our explicit eschewing of
relativity (with LIS of c), the Lagrangian for a multidi-
mensional harmonic lattice, when extended to the con-
tinuum, takes a relativistic form with LIS of cs [16],

Lin ¼
1

2

�
ð∇!ϕÞ2 − 1

c2s

�
∂ϕ

∂t

�
2

þ k2C;inϕ
2

�

¼ 1

2
½ðηsÞab∂aϕ∂bϕþ k2C;inϕ

2�; ð3:4Þ

where the second line expresses it compactly in the internal
observers’ coordinates [3], xa ¼ ðcst; x; y; zÞ, which we
distinguish from those of the lab by using Latin indices, and
where the sonic inverse metric tensor is ðηsÞab, which takes
on the form diagð−1;þ1;þ1;þ1Þ when written in these
coordinates.4 In keeping with our previous choice of
notation, the subscript “in” indicates the particle type,
not the observer describing it.
For the moment, we have chosen the internal and

external observers’ coordinates to be the same except with
the time coordinate rescaled, although we will relax
that assumption below. The subscript “s” on the metric
expresses the important fact that ημν and ðηsÞab are not the
same object despite each having the same components
when written in its natural coordinates. The reader should
also keep in mind that the coordinates xa and xμ are not
related by a Lorentz transformation. These observations
will become important when we start to explore how each
type of particle is viewed by the other type of observer.

C. General framework for describing particles
by external and internal observers

Although Eq. (3.3) is manifestly Lorentz invariant with a
LIS of c, our thesis throughout this work is that internal
observers may have occasion to reexpress this equation
with respect to an entirely different Lorentz symmetry—
specifically, one with a LIS of cs. Wewill discuss why these
observers may wish to do so later on, but for now, we will
simply show that this can be done at the cost of introducing
a (sonic-)Lorentz-violating term.
To proceed, we invoke a coordinate transformation Ka

μ

that expresses the internal coordinates in terms of the
external coordinates, as well as its inverse K̄μ

a, which does
the reverse.5 We shall at first consider the simple case
where the sonic medium is at rest with respect to external
(laboratory) coordinates xμ. However, the formalism we
develop can be generalized to the case where the medium is
in linear motion with respect to the laboratory (but not
rotating). We write the coordinate transformations as

xa ¼ Ka
μxμ; xμ ¼ K̄μ

axa; ð3:5Þ

∂a ¼ K̄μ
a∂μ; ∂μ ¼ Ka

μ∂a; ð3:6Þ

Ka
μK̄μ

b ¼ δab; K̄μ
aKa

ν ¼ δμν: ð3:7Þ

Note that we used the chain rule on Eq. (3.5) to obtain
the transformation rules for ∂μ and ∂a, Eq. (3.6).
Equations (3.5) and (3.6) show the transformation rules
for upper and lower indices, respectively, for all objects so
that contractions remain valid.6

At this point, we can see why a distinction was made
between ημν and ðηsÞab. Specifically, we can now write each
inverse metric tensor in the coordinates of the other Lorentz
symmetry,

ημνKa
μKb

ν ≕ ηab; ð3:8Þ

which is the expression of the external inverse metric in the
coordinates of the internal observers. Analogously,

ðηsÞabK̄μ
aK̄ν

b ≕ ðηsÞμν ð3:9Þ

expresses the internal inverse metric in external
coordinates.

4A brief note on subscripts: We use the subscript “s” to label
kinematical quantities related to measurements, while we use the
subscripts “ex” and “in” to label quantities related to the type of
particle being modeled. We generalize this notation below. We
omit subscripts (“in” or “ex”) on ϕ for conciseness, with the
subscript on L determining its nature.

5Note that K is not a Lorentz transformation since it is relating
coordinates native to different Lorentz symmetries, so we need a
different object, K̄, for the inverse transformation. That is,
K̄μ

a ≠ Ka
μ, which means the inverse matrix cannot be obtained

by a transpose of the original matrix.
6We defer formulating the full mathematical formalism for

working with two different Lorentz symmetries to future work.
Here we present only the relations required. (For instance, the
rules for raising and lowering indices are subtle and introduce
complications not needed here.)
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The Lagrangian in Eq. (3.3) may be reexpressed in terms
of cs to yield a Lagrangian for an external particle viewed
by an internal observer as follows:

Lex ¼
1

2
ðημν∂μϕ∂νϕþ k2C;exϕ

2Þ

¼ 1

2
ðK̄μ

aK̄ν
bη

abKc
μKd

ν∂cϕ∂dϕþ k2C;exϕ
2Þ

¼ 1

2
ðδacδbdηab∂cϕ∂dϕþ k2C;exϕ

2Þ

¼ 1

2
ðηab∂aϕ∂bϕþ k2C;exϕ

2Þ;

after which we extract the sonic metric,

¼ 1

2
½ðηþ ηs − ηsÞab∂aϕ∂bϕþ k2C;exϕ

2�;

and write it in the final form:

Lex ¼
1

2
½ðηsÞab∂aϕ∂bϕþ k2C;exϕ

2 þ ðη − ηsÞab∂aϕ∂bϕ�:
ð3:10Þ

Analogously, the Lagrangian for an internal particle viewed
by an external observer is found to be

Lin¼
1

2
½ημν∂μϕ∂νϕþk2C;inϕ

2þðηs−ηÞμν∂μϕ∂νϕ�: ð3:11Þ

The first two terms of Eqs. (3.10) and (3.11) remain
invariant under Lorentz transformations native to the
observers (internal and external, respectively), while the
third term breaks Lorentz invariance due to the presence of
the foreign metric tensor (η and ηs, respectively).
Recall that we are currently working in the special

case where the sonic medium is at rest with respect to
the laboratory coordinates. Thus, the internal and external
coordinate systems share spatial coordinates and the
direction of time but with a different scaling,

xμ ¼ ðct; x; y; zÞ; ð3:12aÞ

xa ¼ ðcst; x; y; zÞ: ð3:12bÞ

Quite simply, then,

Ka
μ ¼ diagðcs=c; 1; 1; 1Þ; ð3:13aÞ

K̄μ
a ¼ diagðc=cs; 1; 1; 1Þ: ð3:13bÞ

In these coordinates, the (inverse) metric tensors η
and ηs have the standard components in their respective
coordinates,

ημν ¼ diagð−1; 1; 1; 1Þ; ð3:14aÞ

ðηsÞab ¼ diagð−1; 1; 1; 1Þ; ð3:14bÞ

but in each others’ coordinates [Eqs. (3.8) and (3.9)], they
take a different form,

ηab ¼ diagð−c2s=c2; 1; 1; 1Þ; ð3:15aÞ

ðηsÞμν ¼ diagð−c2=c2s ; 1; 1; 1Þ: ð3:15bÞ

Thus,

ðη − ηsÞab ¼ diagðγðcsÞ−2; 0; 0; 0Þ; ð3:16aÞ

ðηs − ηÞμν ¼ diagðγsðcÞ−2; 0; 0; 0Þ; ð3:16bÞ

where

γðvÞ ¼
�
1 −

v2

c2

�−1=2
ð3:17Þ

is the ordinary Lorentz factor with respect to c, and

γsðvÞ ¼
�
1 −

v2

c2s

�−1=2
ð3:18Þ

is the “sonic Lorentz factor” with respect to cs [3].
In order to keep the presentation general, we can write

the inverse metric differences as proportional to dyadic
products of the terms

ðfexÞa ¼ ð1; 0; 0; 0Þ and ðfinÞμ ¼ ð1; 0; 0; 0Þ ð3:19Þ

such that

ðη − ηsÞab ¼ γðcsÞ−2ðfexÞaðfexÞb; ð3:20aÞ

ðηs − ηÞμν ¼ γsðcÞ−2ðfinÞμðfinÞν: ð3:20bÞ

Although we will not consider the case in which the
acoustic medium is in motion relative to the laboratory
coordinates, ðfexÞa and ðfinÞμ can be shown to transform
as four-vectors under their respective Lorentz boosts. We
therefore interpret these terms as four-velocities (sonic and
ordinary, respectively) that indicate the relative state of
motion of the acoustic medium and the lab. The simple
form in Eq. (3.19) applies when the medium and lab are
mutually at rest.7 Although they have the same components

7Formulas of this kind are already known in the literature: see
e.g., Ref. [17]; note also that the formula relating a Newtonian
spatial metric to a Minkowski metric via a timelike vector field
discussed in Ref. [18] is a special case of the above in which the
light cones of one of the metrics under consideration are widened
completely.
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in these particular coordinates, it should be kept in mind
that these are distinct four-vectors, and each respects a
different Lorentz symmetry.
The final forms of our Lagrangians are

Lex ¼
1

2
½ðηsÞab∂aϕ∂bϕþ k2C;exϕ

2 þ γðcsÞ−2½ðfexÞa∂aϕ�2�;
ð3:21Þ

Lin ¼
1

2
½ημν∂μϕ∂νϕþ k2C;inϕ

2 þ γsðcÞ−2½ðfinÞμ∂μϕ�2�:
ð3:22Þ

Crucially, note that these forms are invariant under their
respective Lorentz transformations.8

In fact, if we compare Eqs. (3.21) and (3.22), we see that
they are identical in form, both being special cases of

LðoÞ
p ¼ 1

2
½ðηoÞαβ∂αϕ∂βϕþ k2C;pϕ

2 þ γpðcoÞ−2½ðfpÞα∂αϕ�2�;
ð3:23Þ

where the subscripts “p” and “o,” respectively, correspond
to the particle and observer (internal or external for each),

and the αβ indices refer to observer coordinates. Thus, LðoÞ
p

represents the Lagrangian for particle type p as seen by
observers of type o. This form also accurately describes the
case when the particle and observer are both of the same
type, namely Eqs. (3.3) and (3.4), since γpðcpÞ−2 ¼ 0. In

this case, we abbreviate the notation as Lp ≔ LðpÞ
p .

In what follows, we will explore the physical interpre-
tation of Lagrangians of this form, paying particular
attention to (a) the generality of this framework and
(b) the physical interpretation of the three possible cases
cp < co, cp > co, and cp ¼ co.

IV. INTERNAL AND EXTERNAL OBSERVERS
ON AN EQUAL FOOTING

It is illustrative to consider what happens if we introduce
a second sonic medium. Suppose that the two sonic media
have different densities, and hence different speeds of
sound. We will refer to these media as “milk” and “honey,”
with respective LIS values of cM and cH. For concreteness,
assume that cH > cM. For each medium, we define internal

observers (see Sec. II) with coordinates indexed by “M”
and “H,” respectively. We also define ordinary (c-LIS)
particles and a laboratory coordinate system, both denoted
by “L.”
We limit our analysis to the case in which the media

are mutually at rest. We choose this restriction because
movement of the medium carrying excitations has been
employed as a sonic model for gravitational effects [8]. We
leave this possible extension of the current analysis to
future work. Here, we limit our discussion to the case of
special relativistic effects in order to simplify the presen-
tation and isolate the effects of observer motion and the
varying LIS of the fields.
We consider one phonon field native to the milk and one

native to the honey, as well as a laboratory-native scalar

field. This gives us nine possible Lagrangians LðoÞ
p , with

p; o∈ fM;H;Lg. Seven of them will necessarily be of the
form of Eq. (3.23),

n
LM;LH;LL;L

ðLÞ
M ;LðLÞ

H ;LðMÞ
L ;LðHÞ

L

o
: ð4:1Þ

We turn our attention instead to the remaining two, LðHÞ
M

and LðMÞ
H , since these represent how one internal observer

would view the foreign particle.
To ground our calculations in straightforward laboratory

physics, we will use the laboratory physics as a bridge,
focusing on the behavior of the milk and honey with respect

to the laboratory, i.e., LðLÞ
M and LðLÞ

H . We choose the
following coordinate conventions:

μ ν ¼ laboratory coordinates;

a b ¼ milk coordinates;

j k ¼ honey coordinates:

We define the lab-to-milk transformation Ka
μ and the

lab-to-honey transformation Kj
μ using Eq. (3.5) for each

medium. Using the laboratory coordinates as a bridge, we
now define the honey-to-milk transformation

Ka
j ≔ Ka

μK̄
μ
j : ð4:2Þ

Notice that this transformation is unaffected by any Lorentz
transformation on the laboratory coordinates.
The milk phonons as viewed from the laboratory

coordinates are governed by Eq. (3.23),

LðLÞ
M ¼ 1

2
½ημν∂μϕ∂νϕþ k2C;Mϕ

2 þ ðηM − ηÞμν∂μϕ∂νϕ�:
ð4:3Þ

Using prior steps in the derivation, we can write this in
terms of an observer in the honey. When transforming from

8Explicitly, let xa
0 ¼ ðΛsÞa0axa and xμ

0 ¼ Λμ0
μxμ be a different

set of coordinates, with Λs being a sonic Lorentz transformation
and Λ being an ordinary Lorentz transformation independent
of Λs. Then, the transformation between these coordinates is
xμ

0 ¼ Kμ0
a0xa

0
, with Kμ0

a0 ¼ ðΛsÞa0aΛμ
μ0Kμ

a. The forms of
Eqs. (3.21) and (3.22) are maintained in these new coordinates,
with all indices now taking primes. In particular (and as already
mentioned), ðfexÞa and ðfinÞμ behave as sonic and ordinary four-
velocities, respectively, under these transformations.
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laboratory to honey coordinates, contractions survive
intact, and thus

LðHÞ
M ¼ 1

2
½ðηHÞjk∂jϕ∂kϕþ k2C;Mϕ

2 þ ðηM − ηHÞjk∂jϕ∂kϕ�:
ð4:4Þ

Because the media are mutually at rest, ηM and ηH are both
diagonal in each others’ coordinates [compare Eq. (3.15)],
so we see that

LðHÞ
M ¼ 1

2
½ðηHÞjk∂jϕ∂kϕþ k2C;Mϕ

2 þ γMðcHÞ−2½ðfMÞj∂jϕ�2�:
ð4:5Þ

By an entirely analogous argument, we have the following
result for the honey phonons as viewed by the milk
observers:

LðMÞ
H ¼ 1

2
½ðηMÞab∂aϕ∂bϕþk2C;Hϕ

2þ γHðcMÞ−2½ðfHÞa∂aϕ�2�:
ð4:6Þ

The end result is that all nine Lagrangians LðoÞ
p , for each

pair of p; o∈ fM;H;Lg, are of the form of Eq. (3.23).
Of course, there is nothing special about the milk or the

honey. They are both sonic media and so the scenario is
symmetric—any observer can believe that their relativity
is valid (i.e., that the “true” symmetries of nature are the
Lorentz symmetries with the invariant speed of their own
signals), and that all other signals are propagations in a
medium with a preferred rest frame. There is a kind of
“relativity of relativities” at work here, of a kind stronger
than the one that arises when one considers a “sonic”
experiment within a “photonic” lab, as in [3].9 The only
possibly meaningful distinguishing feature lies in the sign
of the last term, which determines whether the medium
carrying the particle appears as an ordinary acoustic
medium to the observer (co > cp) or a novel tachyonic
medium (co < cp), a concept that will be properly intro-
duced in Sec. V.
The argument above illustrates the point that an

observer in a sonic medium will not determine that they
exist within a medium. Any signals propagating outside
the medium will be described by a Lagrangian that is
equivalent to that for particles internal to the medium, plus
a correction term that looks like a Lorentz violation. An
observer can freely ascribe any Lorentz-violating effects
to the foreign particles. No internal observer has any
reason to construct a concept of Lorentz invariance that

pays attention to anything other than their own local LIS,
and hence all observers (including those in the laboratory,
basing their concept of Lorentz invariance on photons) are
on an equal footing.
We emphasize that we are considering internal observers

as discussed in Sec. I. These observers are compelled to
base their length and time scales on the exchange of sound
signals and are then acting rationally to conclude that sound
signals propagate isotropically, apply Occam’s razor, and
conclude that they do not exist within a medium at all. (For
further discussion of this, see [3,5].)
One radical conclusion implied by the universality of the

Lagrangian equation (3.23) for both external and internal
observers is that an internal observer will be able to argue
(by setting cp ¼ c) that their own sound signals propagate
free of any medium and furthermore that the light-based
relativity in the lab violates (acoustic) Lorentz invariance.
Hence, to this observer, light signals have an implied rest
frame and a (presumed) medium through which they
propagate. (Of course, this does not say anything about
the physical nature of that medium.)
This seems to violate relativity as per Einstein, but in

fact it does not because observers cannot measure the one-
way LIS. Keeping in mind the commonly used image of a
reference frame as a series of correlated clocks and rulers,
it might be that light (or sound, for internal observers)
moves faster in one direction than the opposite direction.
This, however, cannot be determined by an observer who
uses the exchange of those same signals to synchronize
their clocks and hence determine the lengths of their
rulers. (For a detailed discussion of this, see [23].) It
follows that the structure of special relativity is a conse-
quence of choosing a particular type of signal to syn-
chronize clocks, and postulating by fiat that such signals
travel isotropically at a special speed co. The choice of
special speed is a conventional one (rather than being
entirely prescriptive) that is informed by the types of
signals available to be sent and received. While the choice
of this speed is, at its core, arbitrary, some choices lead to
simpler theories than others. We discuss this further in the
next section.

V. RELATIVITY OF RELATIVITIES

Let us expand on this further. Consider the setup shown
in Fig. 1. Here, we have two Langevin clocks (i.e., clocks
consisting of two mirrors and a bouncing signal), F andG,
moving uniformly with respect to one another; the setup is
considered in the rest frame of F, so the two mirrors of F
are represented by the two black vertical lines, whereas
the two mirrors of G are represented by the two grey
diagonal lines.
First, consider the bouncing signal forming the triangle

AOB (△AOB). One can ask: which point on the worldline
of the first mirror is simultaneous with the “bounce” event
on the second mirror? If one adopts the distant clock

9Indeed, we take this to be exactly a case of the “convention-
ality of geometry,” famously associated with Poincaré [19] and
Reichenbach [20] (for a review, see Sec. 4 in Ref. [21]; see
also Ref. [22]).
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synchrony convention proposed by Einstein in his 1905
article—now known as Einstein-Poicaré synchrony or
standard synchrony—then one will stipulate that the event
half-way between the events of emission and reception on
the first mirror will be simultaneous with the bounce event;
thus, one will draw a horizontal simultaneity surface
SimðFÞ, represented by the horizontal solid line.
Next, consider the rest frame of G in motion with respect

to F. Using the same signal defining △AOB, one can ask:
which point on the worldline of the first mirror of G is
simultaneous with the “bounce” event? If one again avails
oneself of standard synchrony, one will now draw the dash-
dotted simultaneity hypersurface Sim1ðGÞ (bisecting the
line segment AB0 and passing through the point O), tilted
with respect to SimðFÞ. This is nothing but the familiar
relativity of simultaneity: choosing standard synchrony
in the rest frames of both F and G causes simultaneity
hypersurfaces to tilt as one views the situation from
different rest frames, and this has the merit of rendering
the one-way velocity of the signal isotropic in any frame
moving uniformly with respect to F.
But now introduce a second signal, faster than the

first, forming the triangle COD (△COD) in Fig. 1. If
one uses this signal to synchronize clocks in the rest
frame of F, then one again produces the simultaneity
hypersurface SimðFÞ and renders the one-way velocity
of this signal isotropic.

What about when one applies standard synchrony to this
signal in the rest frame of G? In this case, one no longer
produces the simultaneity hypersurface Sim1ðGÞ but rather
the distinct simultaneity hypersurface Sim2ðGÞ (bisecting
the line segment C0D0 and passing through the point O),
represented by the dashed line. The latter simultaneity
hypersurfaces—those formed with respect to △COD—are
not those picked out by standard synchrony with respect to
△AOB—that is, they do not render the one-way speed of
the signal forming △AOB isotropic in the rest frame of G
(but they do achieve this for the signal forming △COD).
Likewise, the former simultaneity hypersurfaces—those
formed with respect to △AOB—are not those picked out
by standard synchrony with respect to △COD, that is,
they do not render the one-way speed of the signal
forming △COD isotropic.
Here, then, is the rub. Special relativity à la Einstein

1905 consists of several inputs, among them the relativity
principle, the light postulate, and an assumption of
standard synchrony. But with multiple signals, one has
a conventional choice as to which such signal to apply
standard synchrony with respect to. Having chosen one
such signal (say the signal forming△AOB in Fig. 1), then
in all but one frame, the one-way speed of other signals
will be rendered anisotropic. Thus, insofar as there is a
conventional choice as to which signal to use in adjudi-
cations of the simultaneity of distant events, there is a
conventional chose as to which signals propagate isotropi-
cally and which do not. (These connections are also noted
at e.g., see page 172 in Ref. [12].)
In this sense, then, there is no absolute standard of

isotropy. Signals can only be isotropic or anisotropic
relative to each other. This even goes for signals that travel
faster than the special speed. Ultimately, what breaks
the symmetry in a choice between two signal speeds can
only be dynamical considerations. For example, from the
laboratory standpoint, the standard model of particle
physics takes a particularly simple form when c is chosen
as the LIS for special relativity. This choice happens to be
consistent with the empirical observation that nothing can
travel faster than c (i.e., this choice of LIS also happens to
serve as an ultimate speed limit), but the reader should
take care to note that such an observation does not compel
the choice of c as the LIS. One remains free, instead, to
choose (say) the speed of sound as the LIS for presenting
the standard model. The impediment to doing so is much
more complicated dynamics and failure to reveal the
simplicity of the laws and symmetries that are present
when one chooses c as the LIS.
For example, if one were to construct physical laws

based around a speed cs < c, such that the Lorentz factor
were 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=cs2

p
, not only would the measured

mass of an object increase as it approached cs, but it
would become an imaginary quantity as the object
exceeded cs. To account for collisions between tardyonic

FIG. 1. Two Langevin clocks F and G moving uniformly with
respect to one another, with two different bouncing signals with
different two-way speeds (forming triangles AOB and COD).
The “standard” synchrony conventions for each of the two
signals agree in the rest frame of F, but not in the rest frame of
G, as is clear from the fact that Sim1ðGÞ ≠ Sim2ðGÞ. Thus,
choosing a simultaneity convention that renders one signal
isotropic in all inertial frames of necessity renders all others
generically anisotropic (except in one frame; here, the rest frame
of F), and vice versa.
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and tachyonic objects, the mathematical formulation of
conservation of momentum would have to be written in a
manner that took both real and imaginary momenta into
account. This would be possible, but it would be more
cumbersome than simply recognizing that light has the
fastest speed of any signal we know of and choosing c as
the speed of isotropic propagation.
We have already seen that for internal observers in a

sonic medium, this logic does not hold due to the imposed
restrictions on their ability to interact with particles that do
not dynamically reflect the sonic relativity of their world.
As such, they are right to choose a speed other than c
(specifically, cs) as their LIS since it simplifies their
description of the world to which they have access. The
ubiquity of this fundamental—and often overlooked—
freedom in the description of physical laws is discussed
further in Chapter 2 of Ref. [24].
Note that the choice of a particular clock synchrony

convention is just the choice of a particular coordinatization
of space and time—and it is an utterly prosaic fact of
physics practice that some coordinate systems lead to
simpler descriptions of physical processes than others.
What we are stressing here is that light is not, in some
sense, privileged over sound at the level of kinematics
(perhaps contrary to the thinking of the later Einstein—we
return to this below). Rather, the symmetry between the two
is broken at the level of dynamics, and in particular at the
level of a pragmatic/conventional choice as to what
simplifies the dynamics maximally. Nevertheless, just as
one is free to choose to coordinatize problems in physics in
any way in which one pleases, in principle, one is free to
select any signal as being the “special” signal.
Here is another way to make the point. In Ref. [5], the

authors ask the following question: What would be wrong
with replacing the light postulate in Einstein’s 1905 article
on special relativity with a “sound postulate?” The answer
that the authors offer has to do with the fact that there is
ample empirical evidence for a medium for sound (so goes
an extremely standard line of reasoning, which is endorsed
in Ref. [5]) but no such evidence for a luminiferous ether.
What we wish to stress here is that one could, in principle,
stick to one’s guns by applying standard synchrony with
respect to sound signals, thereby rendering the one-way
speed of sound isotropic in all frames moving uniformly
with respect to one another and thereby rendering the one-
way speed of all other signals (including light) anisotropic
in all but one frame—in other words, affording those
signals a preferred frame, which could be identified with
the rest frame of their medium. It should be recognized that
such a medium need not actually exist. However, the
presumed existence of a medium (or media) will be
consistent with the mathematical description arising from
any given choice of isotropic signal. Practical consider-
ations might weigh against this decision, but there is no
a priori prohibition against it.

VI. THE PROSPECT OF RETROCAUSAL
SIGNALING

Since the speed of sound can be different in different
media, a question that arises naturally is whether we
have created a sonic model of “faster-than-light” signaling
between internal observers by allowing them to send
signals faster than their own LIS using the particles of a
different, faster medium or by using external particles
(which are not bound to a medium). We call this scenario
tachyonic signaling.10 Due to the appearance of a foreign
medium11 having a propagation speed that is faster than that
at which the observers’ excitations propagate, we dub this a
“tachyonic medium.” (The idea of a tachyonic medium was
also considered briefly in Sec. 5.5 of Ref. [5].) This is in
contrast to an acoustic medium—a mundane concept with
which all readers will be familiar—that carries excitations
that propagate slower than the observers’ excitations.
Besides the fact that it has never been observed, a long-

standing objection to the prospect of tachyonic signaling is
that it would allow an observer to send information into
their own past light cone, thereby violating causality.
(There is a large literature on this topic; see e.g.,
Ref. [25] and references therein for discussion.) The
acoustic models described above allow us to investigate
the consequences of such signaling if it were possible.
(Geroch [26], for example, suggests that such signaling is
possible, but does not explore the idea further.)
In the context of this paper, any signal that moves faster

than the LIS of the observer is referred to as “tachyonic.”
Taking a cue from science fiction, we refer to a device
that permits tachyonic signaling as a “subspace commu-
nicator.”12 We are adopting the convention whereby
“subspace” is a distinct domain that admits tachyonic
transmission of signals. Hence, it is entirely reasonable
for observers in one acoustic toy universe to regard another
acoustic toy universe with a higher LIS as a subspace.
There is no reason to presume that a signal cannot be passed
between the “slow” and “fast” universes.
Suppose we have two observers, Marty and Emmett,

equipped with subspace communicators. It is generally held
that Emmett may send information into his own past light
cone, as we can see by reference to the Minkowski diagram
in Fig. 2. For simplicity we can assume that tachyonic
communication is, effectively, instantaneous, and hence

10While the term as defined here applies only to internal
observers sending supersonic signals, and our physical claims are
limited to this case, we intentionally chose a term that would also
apply to (the hypothetical possibility of) superluminal signaling
by external observers.

11This perspective holds for the internal observers regardless of
whether the apparent medium is a real object or not (from the
laboratory perspective), as discussed in Sec. V.

12Several other names have been coined for fictional tachyonic
communication devices including “interocitor,” “Dirac commu-
nicator,” and “ansible.”
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signals travel parallel to the transmitting observer’s spatial
axis. At event A Emmett sends a message to Marty, who is
moving away from Emmett and receives the signal at
event B. Marty then immediately retransmits the signal,
which travels along his −x axis back to Emmett who
receives it at event C. Owing to the angle between the
spatial axes of Emmett and Marty, the event C occurs
before event A (Fig. 2). Such an arrangement of subspace
communicators that would permit an observer to send a
message into their own past light cone is sometimes called a
“tachyonic antitelephone” (Ref. [15]). This scenario vio-
lates causality, as event C may trigger a process that
prevents the signal at A from being emitted, potentially
leading to a version of the so-called “grandfather paradox.”
This leads to three basic responses. The first is to contend

that tachyonic signaling is impossible. The second is to
invoke a chronology protection conjecture [27], implying
that the laws of physics prevent the formation of time
machines (the thought being that, e.g., quantummechanical
effects will destabilize any spacetime geometry that would
allow retrocausal signaling). The third is to invoke some
variant of the Novikov self-consistency principle, which

argues that only self-consistent time-travel histories are
“stable.” (In the foundations of relativity, these options are
discussed further in, e.g., Ref. [28].) We present in the next
section an explicit resolution to this problem in our acoustic
model, which establishes a chronology protection conjec-
ture that is entirely classical.

VII. TACHYONIC MEDIA AND THE
PRESERVATION OF CAUSALITY

In the acoustic model of tachyonic signaling that we have
described, any signal (such as a light signal moving in the
lab) will respect causality, so it appears that we should be
unable to build an acoustic version of the tachyonic
antitelephone (Fig. 2). Breaking the assumption of isotropic
tachyonic signaling is the key. As we have seen in Sec. V,
once one picks a type of signal to be isotropic, there can be
only one—all the others have to adjust accordingly. In the
case under consideration here, an observer will perceive
any tachyonic signal to be traveling as though it is moving
through an ether with a preferred rest frame. If Emmett and
Marty are in relative motion, they cannot both be at rest
relative to the tachyonic signal’s medium, and the resulting

FIG. 3. The apparent presence of a tachyonic medium is
consistent with preservation of causality. In this figure, the
tachyonic medium is at rest with respect to the nonprimed axes,
and tachyonic signals always propagate isotropically with respect
to the non-primed coordinates. When an observer tries to send
information via tachyonic signaling into their own past by
following the procedure shown in Fig. 2 (here shown using a
finite, but sufficiently fast, signal speed for clarity), the existence
of a rest frame for the tachyonic signals ensures the return signal
always has a four-velocity with a positive t component. Thus,
tachyons confined to a medium cannot be used to create a
tachyonic antitelephone.

FIG. 2. The standard scenario by which tachyonic signaling is
argued to admit causality violation [15] involves two observers in
relative motion. If each observer can send a signal that they
perceive as moving sufficiently fast (in this example, infinitely
fast, so that each signal travels parallel to the emitter observer’s
x axis), it is possible for information to perform a round trip into
the past light cone of either observer. In this example, the first
observer (nonprimed coordinates) emits a tachyonic signal at
event A in the þx direction. A second observer (primed
coordinates), in motion away from the first, receives it at event
B and transmits a return signal in the −x0 direction. This signal
arrives at eventC, which lies in the past light cone of event A, thus
violating causality.
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anisotropy of tachyonic signals prevents retrocausal signal-
ing since a round-trip tachyonic signal always propagates
forward in time with respect to the tachyonic medium.
To see how this prevents retrocausal signaling, consider

Fig. 3, with Emmett using the nonprimed axes and Marty
the primed axes. We consider the case in which the
tachyonic medium is at rest with respect to Emmett.
Thus, if Emmett and Marty try to use excitations of this
tachyonic medium to send a round-trip signal as in Fig. 2,
the outbound signal (now shown with a finite but suffi-
ciently fast signal speed) will follow the path D to B, and
the return signal will follow the path B to E, with the return
signal arriving at Emmett (at E, just after A) after he has
sent the outbound signal (from D, just before A), as should
be the case.
In essence, the apparent existence of a tachyonic medium

makes Marty’s motion relative to Emmett unimportant,
as the path of the tachyonic signal through spacetime is
determined by the tachyonic medium, not the orientation of
Marty’s spatial axis. As the speed of the signal relative to
Emmett approaches infinity, the temporal separation
between events D and E becomes arbitrarily small, but
never reverses sign.
Notice that there is nothing preventing a tachyonic signal

being sent from Emmett when his clock shows time T
and arriving at Marty when his clock shows a time earlier
than T. It is not possible, however, for Marty’s return signal
to arrive back at Emmett before his own clock reaches T.
Marty’s return signal always arrives at Emmett’s location as
or after he sends it, never before, and this holds true in any

reference frame. Figure 4 illustrates the anisotropy of
tachyonic signals for a moving observer.
There should be nothing surprising about the anisotropic

propagation of tachyonic signals. Most signals propagate
anisotropically, relative to observers outside the medium
through which they propagate. Light is just unusual
because it does propagate isotropically (as far as we are
concerned and ultimately, as we have seen, by stipulation).
In short, the only significant difference is that sound waves
are anisotropic and slow; tachyons (in this model) are
anisotropic and fast.
That causality is preserved by the anisotropy of

tachyonic signaling fits in well with the “schematic” of
causality-respecting superluminal signaling offered by
Carballo-Rubio et al. in §10 of Ref. [29]. There, the
authors make the case that the conventional logic that
superluminal (tachyonic) communication within relativistic
theories implies causality violation can be turned around
and thus that a causality respecting relativistic theory
incorporating superluminal (tachyonic) communication
can be obtained at the expense of some extra structure
within the theory. In our model, the extra structure that
saves causality for internal observers is that of a preferred
rest frame for the tachyonic signals.
The work of Liberati et al. [12] also makes a point

similar to that of Carballo-Rubio et al., stating, “As far as
causality is concerned, it is impossible to make statements
of general validity, without specifying at least some
features of the tachyonic propagation.” In essence, whether
or not causality is respected or broken is undecidable until

FIG. 4. The propagation of signals in the rest frame of the tachyonic medium (left) and in a frame moving with dimensionless velocity
β ¼ ffiffiffiffiffi

41
p

=21 ≈ 0.3049 with respect to the medium (right), as seen by internal observers. In both cases, the other coordinate system is
shown in grey. Signal velocities σ (the ratio of the signal speed to the speed of sound cs in the medium) define “signal cones” whose
upper boundaries correspond to constant time values in the frame of interest. Signals having σ ¼ 1 follow null curves, defining a “sound
cone” that is invariant under sonically relativistic Lorentz transformations. Only in the tachyonic medium’s frame do signals with σ ≠ 1
propagate isotropically. The same signal cones in the moving frame are tilted, indicating anisotropic propagation. (Still, tachyonic
signals remain tachyonic for all observers since they travel along spacelike intervals.) For σ ¼ β−1 in the medium, moving observers
measure an infinite signal velocity (i.e., parallel to the x0 axis) in theþx0 direction, and a finite velocity (i.e., making a nonzero angle with
the x0 axis) in the −x0 direction. Furthermore, σ > β−1 signals propagating in the positive spatial direction appear to travel into the past,
while still propogating into the future in the negative spatial direction. This asymmetry ensures an observer can never send a signal into
their own past.
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extra structure (“... at least some features of the tachyonic
propagation”) has been provided. In particular, Liberati
et al. [12] come to a similar conclusion as the current work
regarding the extra structure required to avoid casual
paradoxes with tachyonic signaling, stating, “Obviously,
there can be no paradox if, in one particular reference
frame, tachyons can only propagate forward in time.” This
is true within the rest frame of the tachyonic medium for the
model that we have discussed within this current work.

VIII. CONCLUSIONS

Our discussion was initially framed in the context of an
“external” domain (the laboratory) containing an “internal”
sonic domain (the medium), in which case it is tempting to
think of the external domain as being truly Lorentz obeying
and the internal one as being truly Lorentz violating. In
particular, observers may determine that signal speeds in
another domain can exceed those in their own. This may be
interpreted as a hint that their domain exists in a medium
within a larger “external” one.
As emphasized, however, given that Eq. (3.23) does not

pick out a preferred domain, the observers in either domain
may deduce that Lorentz symmetry is obeyed in their own
(since it would be preserved by every other experiment with
which the observer is familiar) and that the other domain is
endowed with a preferred rest frame. We must recognize
that this deduction is perfectly reasonable in either one
(i.e., it comes about as a result of the observers applying
Occam’s razor). It is one particular case of the Poincaré-
Reichenbach conventionality of geometry: various different
geometrical descriptions of physical goings-on are pos-
sible, but only superempirical considerations of simplicity,
etc., can decide between these (Ref. [21]).
What is novel in this formulation is that we have a

physical model that would naturally lead rational observers
to posit a medium that carries tachyonic signals rather than
acoustic ones if, for instance, some intelligent internal
observers discovered light (or hypothetically, if intelligent
external observers discovered superluminal particles). We,
as external observers, have our entire theory of relativity
founded upon the speed of light and thus consider the
phonons used by the internal observers to construct clocks
and rulers to be traveling through an acoustic medium. This
is right and proper since it is the starting point for the
acoustic-observer toy model. The internal observers, how-
ever, cannot ever be proven wrong when they believe that
(1) their relativity is based upon the speed of sound and is
observably legitimate, and (2) they interpret photons as
excitations in a tachyonic medium that has a definite
rest frame.
This is surprising, yet there is nothing that can be done,

under the assumptions made by internal observers, to
convince them that the existence of (supersonic) photons
means that it is the observers’ precious phonons that are

the medium-bound excitations, while the photons are
medium free—which is, of course, what we believe from
the outside. Furthermore, if causality in the external
domain is preserved, we expect it to also be preserved
for the internal observers.
The apparent existence of a preferred rest frame for the

external domain ensures that the order of events observed in
either domain must be the same. This drives home the fact
that the choice of which domain is “truly” fundamental is
arbitrary and conventional as far as the observers in either
domain are concerned. Preservation of causality prohibits
time-travel paradoxes, but in doing so, it removes a possible
standard by which one choice of special speed may be
judged preferable to another. The same reasoning could be
applied outside of the analog toy model presented here.
Specifically, the hypothetical future detection of tachyonic
signaling would not necessarily invalidate our current
understanding of physics, especially if observations of
such signals were consistent with their propagation through
a tachyonic medium.
We may, in fact, invert the reasoning above to conclude

that the structure of special relativity arises from a funda-
mental symmetry of nature: the freedom to choose which
speed corresponds to isotropic (medium-free) propagation
of information. This symmetry is broken by the choice to
synchronize clocks and rulers using the associated signals
(light pulses, sound pulses, etc.), and once this choice is
made, all other signals, whether faster or slower, appear to
propagate anisotropically. It is this freedom to choose a
special speed, rather than some ad hoc prohibition against
tachyonic signaling, that ensures that causality is preserved.
We will close by pointing out an irony in Einstein’s

own writings on special relativity. Later in his life,
Einstein wrote:

“The special theory of relativity grew out of the
Maxwell electromagnetic equations. But… the
Lorentz transformation, the real basis of special-
relativity theory, in itself has nothing to do with
the Maxwell theory” [30].

That is to say, Einstein would later come to regret the
apparent special role of light in his 1905 article. Rather, in
the view of the later Einstein, the situation was this:

“The content of the restricted relativity theory can
accordingly be summarized in one sentence: all
natural laws must be so conditioned that they are
covariant with respect to Lorentz transforma-
tions” [31].

That is, the later Einstein insists that special relativity is best
understood as a universal kinematical constraint of Lorentz
invariance—presumably, with invariant speed c (this is now
a very common view on the theory). In one sense, this
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clearly makes no (explicit) mention of light, but on the
other hand, the implicit choice of c continues to locate the
special theory within an electromagnetic paradigm.
None of this is to say that Einstein was wrong. He was

right to deduce that lengths and durations are not absolute,
and spectacularly so! One can, indeed, using the machinery
of the 1905 article, select any signal to be the “special”
signal, apply standard synchrony (one of the conventional
inputs of the 1905 approach) with respect to that signal, and
deduce the mathematical structure of special relativity. As
discussed, this would impact the simplicity of the dynamical
laws, but at the kinematical level, this is not a consideration.
It is ironic that the later Einstein viewed his universal

kinematical constraint as liberating special relativity from

electromagnetism. We would suggest, to the contrary, that
the opposite is the case. Precisely what is to be resisted,
in fact, is the view that c has any special kinematical
significance over other signal speeds.
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