21 research outputs found
Initial operating experience of the 12-MW La Ola photovoltaic system.
The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place
Recommended from our members
Initial operating experience of the 12-MW La Ola photovoltaic system.
The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place
Recommended from our members
Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena
The Boltzmann transport equation can be solved to give analytical solutions to the resistivity, Hall, Seebeck, and Nernst coefficients. These solutions may be solved simultaneously to give the density-of-states (DOS) effective mass, the Fermi energy relative to either the conduction or valence band, and a scattering parameter that is related to a relaxation time and the Fermi energy. The Nernst coefficient is essential for determining the scattering parameter and, thereby, the effective scattering mechanism(s). The authors constructed equipment to measure these four transport coefficients simultaneously over a temperature range of 30-350 K for thin, semiconducting films deposited on insulating substrates
Recommended from our members
Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.
Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards
Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors
Understanding the evolution of the geometry of silicon solar cells
International audienceToday, solar cells are very familiar to the broad public, and everyone has noticed their particular geometry resembling a square with rounded-off corners. However, the rationale behind this geometry is little known. This paper presents a precise study of the geometry of silicon solar cells and its evolution since their appearance in the early 1960s. Through a parametric approach taking into account different types of constraints, it is shown that the cell geometry is the result of an optimization process depending on both technical and economic aspects. The correlation between the parametric study and historical data shows that the photovoltaic panels that we see today on our roofs have been mainly shaped by the evolution of cost constraints over the past decades