5,613 research outputs found

    Simplified Tightly-Coupled Cross-Dipole Arrangement for Base Station Applications

    Full text link
    © 2013 IEEE. The electromagnetic fundamentals that govern the performance characteristics of dual-polarized tightly coupled cross-dipoles that are widely used in cellular base station applications are investigated. The mutual coupling effects and their impact on standard performance indices are stressed. A model is developed that considers this type of cross-dipole as an array. Links between the physical dimensions of the components of these model and key radiation characteristics, including directivity, half-power-beam width, and cross polarization discrimination levels, are established. The model guides the introduction and optimization of a simplified cross-dipole structure that exhibits excellent performance. A prototype was fabricated, assembled, and tested. The measured results are in good agreement with their simulated values, validating the model, and its governing principles

    A general design and optimization method of tightly-coupled cross-dipoles for base station

    Full text link
    © 2018 Institution of Engineering and Technology.All Rights Reserved. This paper investigates the working mechanism of dual-polarized tightly-coupled cross-dipoles that are widely used in cellular base station applications. The effects of couplings between sub-dipoles on the performance indexes of concern are observed. A theory of considering this type of cross-dipole as an array is proposed and validated. The proposed theory explains why a stable radiation pattern can be achieved by this kind of structure. The array model can be used to guide the introduction and optimization of a simplified cross-dipole structure for base station application

    A Dual Layered Loop Array Antenna for Base Stations with Enhanced Cross-Polarization Discrimination

    Full text link
    © 1963-2012 IEEE. This paper presents a novel dual-loop array antenna targeted at current and future base station applications. The antenna has four rectangular loops and four trapezoidal loops printed on the front and back sides, respectively, of a substrate placed above a flat square reflector. All eight loop radiators are excited simultaneously with properly designed feed networks to achieve its ±45° polarization states. The trapezoidal loops act like folded (electric) dipoles; the rectangular loops act primarily as magnetic dipoles. The combination of these two loop arrays leads to a type of magnetoelectric loop antenna that has stable directivity patterns with high cross-polarization discrimination (XPD) values across a 45.5% operational fractional bandwidth from 1.7 to 2.7 GHz. A fabricated and measured prototype confirms the simulation results and demonstrates that the half-power beamwidths in the horizontal plane vary between 63° and 70°, the XPD values are >20 dB in the boresight direction, and are >10 dB within the entire cellular coverage angular range:-60 θ 60°

    Doping effects on the phase separation in perovskite La0.67-xBixCa0.33MnO3

    Get PDF
    Effects of Bi, Cr, and Fe doping on phase separation of La0.67Ca0.33MnO3 have been experimentally studied. As proved by the electron-spin resonance and neutron-diffraction studies, partial replacement of La by Bi causes the simultaneous occurrence of ferromagnetic (FM) phase and charge-ordered antiferromagnetic phase. As a consequence, two subsequent magnetic transitions at ∼120 K and ∼230 K are resulted. A strong coupling between the coexisted phases is assumed, which is responsible for the insensitivity of Tc(L), the higher Curie temperature, to Bi doping after the appearance of phase separation, and consistent with the discontinuous variation of Tc(L) with Cr doping. As expected, the substitution of Cr for Mn in this case promotes the FM order, but its effects are significantly different for the two magnetic states. Each Cr drives ∼100 neighboring unit cells, for the high-moment state, and ∼60 unit cells, for the low-moment state, into the FM state. Two definite processes can be identified for the melting of the charge-ordered phase. The FM fraction increases rapidly in the initial stage of Cr doping, and then slowly when the FM population exceeds ∼90%. This could be a common feature of the phase-separated system suffering from random-phase fluctuation according to a theoretical analysis. Exactly opposite effects on phase constituent are produced by Cr doping and Bi doping, and 1% Cr are equivalent to ∼4.6% Bi. In contrast, both Cr doping and magnetic field promote the FM order. 1% Cr correspond to a field of ∼4.5 T for the low-moment state and 6 T for the high-moment state, reducing the energy difference between the charge ordering and the FM states by ∼0.96 meV/Mn and ∼1.3 meV/Mn, respectively.published_or_final_versio

    Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity

    Get PDF
    Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow

    Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control

    Full text link
    Sampled-data analysis and harmonic balance analysis are applied to analyze switching DC-DC converters under constant on-time control. Design-oriented boundary conditions for the period-doubling bifurcation and the saddle-node bifurcation are derived. The required ramp slope to avoid the bifurcations and the assigned pole locations associated with the ramp are also derived. The derived boundary conditions are more general and accurate than those recently obtained. Those recently obtained boundary conditions become special cases under the general modeling approach presented in this paper. Different analyses give different perspectives on the system dynamics and complement each other. Under the sampled-data analysis, the boundary conditions are expressed in terms of signal slopes and the ramp slope. Under the harmonic balance analysis, the boundary conditions are expressed in terms of signal harmonics. The derived boundary conditions are useful for a designer to design a converter to avoid the occurrence of the period-doubling bifurcation and the saddle-node bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications on August 10, 2011; Manuscript ID: CTA-11-016

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    The condition-dependent transcriptional landscape of Burkholderia pseudomallei

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.This work was funded by a core grant provided by the Agency for Science, Technology and Research to the Genome Institute of Singapore, and funding from the Defence Medical and Environmental Research Institute, Singapore. This work was supported in part through NIAID contract HHSN266200400035C to BWS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore