
 
 

Certified Password Quality — A Case Study Using Coq and
Linux Pluggable Authentication Modules

 
 

TeesRep - Teesside's
Research Repository

Item type Meetings and Proceedings

Authors Ferreira, J. F. (João); Johnson, S. A.; Mendes, A.
(Alexandra); Brooke, P. J. (Phillip)

Eprint Version Post-print

Publisher Springer

Journal Lecture Notes in Computer Science

Additional Link http://ifm2017.di.unito.it/index.php

Rights Author can archive post-print (ie final draft post-
refereeing). http://www.sherpa.ac.uk/romeo/issn/0302-
9743/

Downloaded 24-Mar-2019 13:48:11

Link to item http://hdl.handle.net/10149/621304

TeesRep - Teesside University's Research Repository - https://tees.openrepository.com/tees

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322322816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tees.openrepository.com/tees
https://tees.openrepository.com/tees
http://hdl.handle.net/10149/621304


Certified Password Quality

A Case Study Using Coq and Linux Pluggable
Authentication Modules

João F. Ferreira1,2, Saul A. Johnson1, Alexandra Mendes1, and
Phillip J. Brooke1

1 Teesside University, School of Computing, Middlesbrough, TS1 3BX, UK
2 HASLab/INESC TEC, Universidade do Minho, 4704-553 Braga, Portugal

joao@joaoff.com {Saul.Johnson,A.Mendes}@tees.ac.uk pjb@scm.tees.ac.uk

Abstract. We propose the use of modern proof assistants to specify,
implement, and verify password quality checkers. We use the proof assis-
tant Coq, focusing on Linux PAM, a widely-used implementation of plug-
gable authentication modules for Linux. We show how password quality
policies can be expressed in Coq and how to use Coq’s code extraction
features to automatically encode these policies as PAM modules that can
readily be used by any Linux system.
We implemented the default password quality policy shared by two widely-
used PAM modules: pam cracklib and pam pwquality. We then compared
our implementation with the original modules by running them against
a random sample of 100,000 leaked passwords obtained from a publicly
available database. In doing this, we demonstrated a potentially serious
bug in the original modules. The bug was reported to the maintainers of
Linux PAM and is now fixed.

Keywords: password quality, password policy, verification, security, au-
thentication, Coq, proof assistant, theorem prover, Linux, PAM

1 Introduction

Password quality is essential to keeping any password-protected system secure.
If a password is easy to guess and an attacker gains authenticated access as
a result, any security measures deployed to restrict access by unauthenticated
users become irrelevant. From the perspective of the system, the attacker is
indistinguishable from the legitimate user.

Without an enforced password quality policy, passwords created by users
tend to be weak [11]. A password quality policy may mandate, for example,
that all user passwords contain a mixture of upper case, lower case, and numeric
characters in order to maximise the search space that a brute-force algorithm
would need to examine in order to correctly guess a user’s password. It is critical
that the software that enforces these policies (the password quality checker) is
both correct and configurable to keep up with the large body of ongoing research
into password policy best-practises [7, 28, 32].



2

Fig. 1: An overview of the process of creating a verified PAM module.

The importance of password quality checkers makes them an ideal candidate
for formal verification. Using recent advances in code generation from theorem
provers, it is now possible to transform high-level verified functional implemen-
tations into certified code that can be used in place of unverified procedural
code to perform password quality checking. We therefore propose the use of
modern proof assistants to formally verify password quality checkers. To demon-
strate this, we use the Coq proof assistant [3] to specify, implement, and verify
password quality checkers. We focus on Linux PAM [25, 26], a widely-used im-
plementation of pluggable authentication modules (PAM) for Linux. We show
how we can define password quality policies in Coq and automatically encode
them as Linux PAM modules that can readily be used. We document the pro-
cess of extracting verified password quality assessment functions from a verified
Gallina code base (Coq’s specification language) into Haskell [19] and calling
them via the Haskell foreign function interface (FFI) [13] from a driver written
in C. Fig. 1 provides an overview of this process. We implemented several PAM
modules that perform password quality checking using verified code. In partic-
ular, we implemented a module identical to the default behaviour shared by
two widely-used PAM modules designed to act as password quality checkers on
Linux systems: pam cracklib and pam pwquality. In doing this, we demonstrated
a potentially serious bug in the original PAM modules. The bug was reported
to Linux PAM’s maintainers and is now fixed.

In Section 2, we discuss password quality checking software, focusing on
Linux PAM. Section 3 is about the use of Coq to specify, implement, and verify
password quality checkers. We evaluate our work in Section 4 by comparing our
implementation with pam cracklib and pam pwquality . We also demonstrate that
the flexibility of our approach allows users to create verified password policies
quickly and easily. After presenting related work in Section 5, we conclude the
paper in Section 6.

2 Password Quality Checking Software

Password quality checking refers to techniques used to ensure that users do not
create passwords that are vulnerable to brute-force attacks or guessing by a



3

Passwords must:
– Not be identical to the previous password, if any.
– Not be palindromic.
– Not be a rotated version of the old password, if any.
– Not contain case changes only in relation to the previous password, if any.
– Have a Levenshtein distance of 5 or greater from the previous password, if any (difok=5).
– Be at least 9 characters long (minlen=9), however:
• Passwords may be 1 character shorter if they contain at least 1 lower case letter (lcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 upper case letter (ucredit=1).
• Passwords may be 1 character shorter if they contain at least 1 digit character (dcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 other character (ocredit=1).
• This shortening of minimum length will stack, making for a minimum length of 9 - 4 = 5 for

passwords containing all 4 classes.
• Effective minimum length is, then M = m − c where M is the effective minimum length, m is

the configured minimum length and c is the number of character classes present in the string.

Fig. 2: Default policy implemented by pam cracklib and pam pwquality.

party with access to basic information about the user. For example, a user may
be unable to create a password that is identical to their user name or email
address, or that is too short. A range of other issues relate to passwords such
as memorability, storage of passwords on systems, and other means to obtain
passwords (such as snooping). We do not address these further in this work.

Password quality checking software often requires that an administrator pro-
vide a password quality policy which specifies the minimum characteristics of an
acceptable password. A significant body of research is emerging that challenges
conventional wisdom about what constitutes a secure password [28, 32].

Linux PAM We focus on Linux PAM [25, 26], a widely-deployed open-source
application that pulls together multiple authentication-related modules into one
high-level API, allowing application developers to create programs that rely
on various authentication services independently of the underlying implementa-
tions. Two well-known PAM modules that are used to indicate password quality
are pam cracklib and pam pwquality. Both modules are written in C, use the
same backend, and define the same default password quality policy (see Fig. 2).
Fig. 3 shows the type of code used in these modules to check whether a password
is palindromic. Fig. 3a shows a pure function named palindrome that returns 1
if the password given is a palindrome and 0 otherwise; Fig. 3b shows how the top-
level function password_check uses palindrome to check if the new password
is a palindrome (msg and _ are used for error control and internationalisation
purposes respectively).

Since these modules are enabled by default in many popular Linux distri-
butions, they are widely deployed. For example, in Red Hat Enterprise Linux 7
and in CentOS 7, the pam pwquality PAM module replaced pam cracklib, which
was used up to version 6 as a default module for password quality checking [17].
It is estimated that CentOS is one of the most popular Linux distributions for
web servers and is installed on millions of these worldwide3.

3 See, for example, https://w3techs.com/technologies/details/os-linux/all/

all, and http://www.computerworld.com/article/2468596/network-software/

the-most-popular-linux-for-web-servers-is----.html



4

static int palindrome(const char *new)
{

int i, j;
i = strlen(new);

for (j = 0;j < i;j++)
if (new[i - j - 1] != new[j])

return 0;

return 1;
}

(a) The palindrome function checks
whether the argument string is palin-
dromic.

static const char *password_check(
pam_handle_t *pamh,
struct cracklib_options *opt,
const char *old, const char *new,
const char *user)

{
[...]
newmono = str_lower(strdup(new));
[...]

if (!msg && palindrome(newmono))
msg = _("is a palindrome");

[...]
}

(b) The password_check function calls the
function palindrome to check whether the
proposed new password is palindromic.

Fig. 3: Two functions from pam cracklib.c, one pure with only the new password
accepted as a parameter, and one which drives the password checking process.

3 Verified Password Quality in Coq

We now describe how we use Coq to specify, implement, and verify password
checkers. We implement checkers as pure functional programs and demonstrate
Coq’s flexibility by showing different ways to specify them: often, we consider the
functional programs to be functional (executable) specifications, but we can also
specify checkers by theorem or by property (i.e. axiomatically). We conclude this
section by describing how verified functional implementations can be extracted
as Haskell code and linked with PAM modules that can be readily used.

3.1 Types and Password Checkers

In our model, we consider passwords to be Coq strings:

Definition Password := string.

Password checkers can be seen as functions from strings to booleans (e.g. the
function palindrome in Fig. 3a is such a function). However, we want password
checkers to take into consideration more elements, such as the previous password
or the user’s name (see the signature of password_check in Fig. 3b).

In our model, we consider the user’s previous password and we encode this
information in the type PasswordTransition:

Inductive PasswordTransition : Set :=

PwdTransition : (option Password) -> Password -> PasswordTransition.

An element of the type PasswordTransition represents an old password being
changed into a new password. The old password is optional: if a user changes
their password, the previous password is available as it must be entered to
proceed; if an administrator changes the password of a user, that information



5

is unlikely to be available. With these types defined, a password checker can be
described as a function that takes a PasswordTransition and either succeeds
or returns some error message. We define the type of a password checker as:

Definition CheckerResult := option ErrorMsg.

For example, a password checker that prevents passwords from being palin-
dromes can be defined as:

Definition not_palindrome (pt : PasswordTransition) : CheckerResult :=

if palindrome (new_pwd pt) then

BADPWD: "The new password is a palindrome."

else

GOODPWD.

This defines a new password checker named not_palindrome whose behaviour is
quite simple: if the new password (new_pwd pt) is a palindrome, then it should
be rejected (with a specific error message). This checker depends on the function
palindrome, which is discussed in the next subsection.

The reserved keywords BADPWD and GOODPWD are defined as symbolic abbre-
viations denoting the appropriate elements of type CheckerResult:

Notation GOODPWD := None.

Notation "BADPWD: msg" := (Some msg).

The palindrome checker uses only the new password and not the old password.
This is not the general case: e.g., the old password is required when we do not
want the new password to be a prefix of the old password (or vice-versa):

Definition prefix_old_pwd (pt : PasswordTransition) : CheckerResult :=

NEEDS old_pwd FROM pt

if (prefix (old_pwd pt) (new_pwd pt)) ||

(prefix (new_pwd pt) (old_pwd pt))

then

BADPWD: "The new password is a prefix of the

old password (or vice-versa)"

else

GOODPWD.

This password checker returns an error if the old password (old_pwd pt) is a
prefix of the new password (new_pwd pt) or vice-versa. The checker depends
on the function prefix, which is discussed in the next subsection. The body of
this checker is prefixed by a new construct expressing that the old password is
required to define the checker: NEEDS old_pwd FROM pt. The definition of NEEDS
means that if the old password is undefined (e.g. if the administrator is changing
the password of a normal user), then the check is disabled. Further, the function
old_pwd is being exposed to the checker as a local function. This provides a safer
way to access the old password, because using old_pwd pt without prefixing it
with the NEEDS construct will result in a type error (caught at compilation time).
In other words, the function old_pwd is only available in contexts where the
old password is defined, thus avoiding conditional boilerplate code that checks
whether the old password is defined.



6

3.2 Specification, Implementation, and Proofs

An advantage of defining password checkers in a proof engineering environment
such as Coq is that we can prove properties about implementations. For example,
if we want to prove that prefix_old_pwd is skipped when the old password is
undefined, we can state and prove a lemma as follows:

Lemma prefix_old_pwd_undefined: forall (pt: PasswordTransition),

old_pwd_is_undefined(pt) = true -> prefix_old_pwd(pt) = GOODPWD.

Proof.

intros. unfold old_pwd_is_undefined in H.

(* Case analysis *)

destruct pt. destruct o.

(* Case 1 (trivial): old password is defined *)

- congruence.

(* Case 2: old password is undefined *)

- unfold prefix_old_pwd. simpl. auto.

Qed.

The lemma simply states that if the old password is undefined4, then the checker
prefix_old_pwd is disabled (i.e. it accepts all passwords). The proof is by case
analysis and is made simple by using tactics such as congruence, simpl, and
auto.

In the context of our work, the most important aspect to verify is func-
tional correctness. We have seen above that password checkers are functions from
PasswordTransition to CheckerResult that normally depend on inner pure
functions. For example, the checker not_palindrome depends on palindrome

and prefix_old_pwd depends on prefix. In general, when defining password
checkers, we are interested in proving that the inner pure functions are cor-
rect. In the remainder of this section, we discuss different approaches to specify
password checkers. The point of showing different specification approaches is to
demonstrate that writers of verified password checkers can use their preferred
style of specification (e.g. functional programmers will probably prefer to write
functional executable specifications).

Functional (executable) specifications As we are using a high-level func-
tional programming language to encode password checkers, we can give direct
implementations of constructive or executable specifications [30, 31]. E.g., the
following definition of palindrome acts both as specification and implementation:

Definition palindrome (s : string) : bool :=

s ==_s (string_reverse s).

This definition is an implementation (i.e. it can be executed), but it also describes
the notion of palindrome: an arbitrary string s is a palindrome if and only if
s is the same as its reverse. Most programmers would be satisfied with this

4 old_pwd_is_undefined(pt) is defined to return true when the old password is un-
defined and false otherwise



7

specification, but because we are in a proof engineering environment, we can
prove further properties; an example is the following lemma stating that the
function that reverses a string is involutive.

Lemma string_reverse_involutive : forall (s : string),

string_reverse (string_reverse s) = s.

Proof.

induction s as [| c s’].

(* Base case *)

- simpl. reflexivity.

(* Inductive step *)

- simpl. rewrite (string_reverse_unit (string_reverse s’) c).

rewrite IHs’. auto.

Qed.

The proof is by induction and uses the lemma string_reverse_unit, which
states that for all strings s and characters c, we have:

string reverse(string append(s, c)) = string append(c, string reverse(s))

Specification by theorem A proof assistant like Coq also allows us to spec-
ify functions by capturing their specifications as theorems. E.g., the function
prefix, used in the password checker prefix_old_pwd, can be specified as:

Theorem prefix_correct : forall s1 s2 : string,

prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.

This theorem states that a string s1 is a prefix of a string s2 if and only if
s1 is the substring of length length s1 starting at position 0 of s2 (i.e., for
k = length s1, the string composed by the k leftmost characters of s2 is s1).
This is proved in Coq’s standard library.

Specification by property Strong specifications usually demand a greater
proving effort: proofs are normally more complex and it is often the case that
deeper knowledge of the proof assistant is required.

In some cases, it may be easier or desirable to prove properties that do not
fully specify the implementation, but nevertheless increase our confidence in its
correctness. For example, suppose that we define the Hamming distance [14, 15]
between two strings of equal length as follows:

Fixpoint hamming_distance (a b : string) : option nat :=

match a, b with

| EmptyString, EmptyString => Some 0

| String ca a’, String cb b’ =>

match hamming_distance a’ b’ with

| None => None

| Some n => Some ((nat_of_bool (negb (ca ==_a cb))) + n)

end

| _, _ => None

end.



8

Instead of fully specifying this function, we increase our confidence in this imple-
mentation by proving properties the Hamming distance satisfies. For example:

Lemma hamming_distance_undefined_for_different_lengths : forall (a b : string),

length a <> length b <-> hamming_distance a b = None.

Lemma hamming_distance_defined_for_same_length : forall (a b : string),

length a = length b -> hamming_distance a b <> None.

Lemma hamming_distance_zero_for_identical : forall (s: string),

hamming_distance s s = Some 0.

3.3 Password Policies and Code Extraction

Our framework mimics the behaviour of the PAM modules pam cracklib and
pam pwquality in that password quality policies are lists of password checkers
executed successively. E.g., the policy shown in Fig. 2 is defined as follows:

Definition pwd_quality_policy :=

[ diff_from_old_pwd ; not_palindrome ; not_rotated ;

not_case_changes_only ; levenshtein_distance_gt 5 ;

credits_length_check 8 ].

This list, together with all its contents, is extracted into Haskell code by using
Coq’s code extraction mechanism [24]. Finally, the extracted Haskell code is
linked with a C driver to create a PAM module that calls the Haskell code via
Haskell’s foreign function interface (FFI) [13]. In short, the C code calls each
password checker with a password transition and reports the result to the user.

4 Evaluation

In this section, we evaluate our work by comparing the newly implemented
verified PAM module to the original in terms of behaviour, performance, and
compiled executable size. We describe the bug discovered in the original module,
and demonstrate that the flexibility of our approach allows users to create verified
password policies quickly and easily.

4.1 Experimental Setup

Using Vagrant, a virtual machine running Ubuntu 16.04 “Xenial” 64-bit with
Coq v8.6 and the Glasgow Haskell Compiler v7.10.3 installed was created to
provide a consistent testing environment [23]. An unmodified instance of this
machine was used for every test run.

A random sample of 100,000 passwords was obtained from a publicly available
database of ten million leaked passwords [5] using a Python script. An instance
of the test machine was then configured to use each module in turn as the
password quality checker for its native passwd executable, which handles user



9

password changes. A set of shell scripts was created to run each password through
this executable one at a time and record the results, which consist of feedback
from the active PAM module about the strength of the submitted password. As
the script terminates passwd after the first password entry, no actual password
change was performed as the password must be entered twice (for confirmation)
in order to effect one. Importantly, the passwords were checked on their own
merit and not in the context of a password change; that is, the old password in
use before the attempted password change was not taken into account during
password quality checking. As a result of this, any password quality checks that
compare the new password to the old password in any way were not in effect.
This raw data was passed through a Python script which consolidated it into a
CSV file ready for further analysis using spreadsheet software.

The behaviour of the verified module was then compared to the original
module. All dictionary checks were disabled in the original module (and omitted
from the verified module) prior to testing. All source code was maintained under
source control on GitHub [22].

4.2 Experiment 1: Comparison with PAM Modules pam cracklib
and pam pwdquality

The verified PAM module was first configured and built to implement the default
policy shared by both pam cracklib and its successor pam pwquality (shown in
Fig. 2 and encoded as shown in Section 3.3).

As expected, the verified module behaved identically to the original, accept-
ing 56574 of the passwords in the database (that is, deeming them secure enough)
with absolute consistency between them (i.e. the same passwords were accepted
or rejected).

Aside from the behaviour of the module itself and whether or not it is written
using verified code, there are other factors that may be considered when deciding
on the most suitable module to use on any one system. For example, performance
and executable size. In order to compare the performance of the verified module
to the original module, each run of passwd during the experiment was timed and
averaged to calculate an average checking time per password (Table 1).

Module Description Avg. Time

pam cracklib nodict Original C implementation of pam cracklib
with dictionary check disabled.

0.00926278s

pam basic pwd policy Verified module built with the default
pam cracklib default policy enabled (with-
out dictionary check).

0.011845369s

Table 1: Average execution time for each test run.



10

The average checking time for the verified module is around 1.28 times that
of the unverified C module in all cases, but this difference is not as drastic as
had been anticipated, considering that many algorithms in use within the verified
module are not nearly as efficient as those in the original (compare the inefficient
— yet easier to reason about — definition of palindrome shown in Section 3.2
to the implementation shown in Fig. 3a).

With regard to executable size, it is unsurprising that the compiled veri-
fied module is significantly larger than the original module (Table 2). The veri-
fied module is linked against several dependencies from both the Haskell and C
standard libraries. The authors recognise, however, that on non-critical storage-
constrained systems, it may be inconvenient to use an executable around 9 times
the size of its unverified counterpart when its behaviour is expected to be iden-
tical.

File Name Description File Size

pam cracklib nodict.so Original C implementation of
pam cracklib with dictionary check
disabled.

22384 bytes

pam basic pwd policy.so Verified module built with the de-
fault pam cracklib default policy enabled
(without dictionary check).

189688 bytes

Table 2: File size comparison between the original and verified modules.

4.3 Experiment 2: Increasing Password Entropy

Research into password complexity [16] has shown that it may become almost
mandatory for users to create longer passwords that contain a good mixture of
uppercase and lowercase letters, numbers, and symbols. It would not be unrea-
sonable, then, for a system administrator to enforce a policy mandating that no
passwords have more than two characters of the same class (i.e. type) in a row
in an effort to boost entropy (see Table 3 for examples).

Password Accepted Reason

1234Password No More than one number in a row, more than
one lowercase letter in a row.

1Ll4m4!Gg Yes No more than one number, uppercase let-
ter, lowercase letter or symbol in a row.

correcthorsebatterystaple No More than one lowercase letter in a row.

Ab4kUs#! No More than one symbol in a row.

Table 3: Example of the status of different hypothetical passwords under the
proposed policy.



11

In order to accomplish this using pam cracklib, the maxclassrepeat option
must be set to 1. After configuring the original pam cracklib and the verified
module in this way (using the policy from Fig. 2 with the additional constraint
that no two consecutive characters may be of the same class), the test was run
again over the same password database. In this case, the modules did not perform
identically.

While the verified module predictably accepted only a tiny minority (371) of
passwords, the original module exhibited exactly the same behaviour as before
and accepted 56574 passwords. This result demonstrated the effects of a bug in
pam cracklib, specifically a check done inside pam cracklib.c on line 411:

if ( opt->max class repeat > 1 && sameclass > opt->max_class_repeat) {

return 1;

}

Rather than checking if the option max_class_repeat is set to a number greater
than zero, the check is done against 1 instead (see highlighted code). This has the
consequence of disabling the check entirely, which contradicts the documentation
for the option and any intuition on the part of the system administrator.

This issue was raised on the Linux PAM GitHub repository [18], along with
a pull request containing the fix. A project maintainer reviewed it to their satis-
faction and merged the fix into the official repository, to be distributed in future
releases. After the fix had been applied, the pam cracklib module was compiled
and tested again against the password database, this time functioning consis-
tently with the verified module.

4.4 Experiment 3: A Simple Policy

To demonstrate the flexibility of our approach, we show that it is possible to
quickly and easily compile a password quality checker PAM module drawing on
specific research findings. Kelly et al. [21] suggest that the use of the basic16
password policy (16 alphabetic characters) creates passwords that are more re-
silient against brute-force attacks than policies such as complex8 which allows for
shorter (length 8), but more complex passwords containing a mixture of cases,
numbers, and symbols.

The verified module was quickly reconfigured, rebuilt, and reinstalled with
this new, very simple policy in place. In code, we simply alter the list of password
quality checkers to apply only a length check and nothing more, before extracting
the Coq code to Haskell and rebuilding the C driver:

Definition pwd_quality_policy := [

plain_length_check 16

].

The policy makes use of the plain_length_check function that evaluates a
password on length alone:



12

Definition plain_length_check (len : nat) (pt : PasswordTransition)

: CheckerResult := if length (new_pwd pt) >=? len then GOODPWD

else BADPWD: "The new password is too short.".

The accompanying plc_correct lemma and proof certify that this function
behaves correctly:

Lemma plc_correct: forall (len : nat) (pt : PasswordTransition),

plain_length_check len pt = GOODPWD

<-> is_true (length (new_pwd pt) >=? len).

Proof. repeat (split; unfold plain_length_check;

destruct (length (new_pwd pt) >=? len); crush). Qed.

In this case, because the function is very simple, the implementation is as com-
plex as its specification. However, in general, this is not the case (see, for in-
stance, the examples in Section 3). The proof is based on the definition of the
function and a case analysis on the length of the new password. It also de-
pends on the crush tactic from [10]. On running this newly-configured checker
over the password database, 970 passwords were accepted while the rest were
shorter than 16 characters in length and therefore rejected. Interestingly, the
original pam cracklib and pam pwquality libraries can not be configured in this
way without making changes at the source code level and recompiling, as var-
ious checks (palindrome being one example) cannot be disabled through con-
figuration alone. While our approach also requires recompilation of the verified
module, the scope of the required source code changes (modification of one list)
is so small that it arguably amounts to little more than a configuration change.
In this way, our approach is demonstrably more flexible than that taken by the
original modules.

5 Related Work

To the best of our knowledge, this is the first effort in creating verified password
quality checkers. The closest related work on provably improving the reliability
of authentication systems is the body of work on verification of authentication
protocols. For example, the work presented in [27] and [12] uses CSP and PVS to
analyse and verify authentication properties. A very popular automatic crypto-
graphic protocol verifier is ProVerif [4]. Uses of ProVerif include the verification
of a user authentication protocol named oPass [29] and security properties of
mutual-authentication and key-exchange protocols [6].

The work presented in this paper has been motivated by recent advances that
make practical the verification of system security components [1]. In particular,
we were inspired by approaches that are based on extracting (or generating) code
directly from proof assistants. An example is FSCQ [8, 9], the first file system
with a machine-checkable proof (using Coq). Similar to what we do, a Haskell
implementation is extracted using Coq’s extraction feature. Two additional ex-
amples are the implementation of a conference management system [20] and of
a distributed social media platform [2], where code generation was also used to
extract correct Scala implementations from Isabelle specifications.



REFERENCES 13

6 Conclusion

Through this work, we have used the proof assistant Coq to create verified
password quality checkers in the form of PAM modules with at least as much
functionality (aside from dictionary checks) as pam cracklib and pam pwquality
which are already widely deployed. We identified a potentially serious bug and
we demonstrated that our framework can be used to easily create new certified
password quality policies.

Despite the successes, limitations remain. While we use a code extraction
approach that substantially reduces the size of the unverified code base, it does
not eliminate it entirely. Some low-level unverified C code must still be written
in order to call the extracted code in a useful context. Importantly, while the
Gallina code is verified, the authors are not aware of any correctness proof of
Coq’s code extraction mechanism. Executable size is also greatly increased in
the verified modules almost by an order of magnitude, which may place serious
limitations on its use by storage-constrained systems.

The collection of proofs for the verified checkers is being constantly improved
as part of an ongoing verification effort as we investigate potential future work
in this area (see [22]). In particular, we aim at making most proofs as simple and
automatic as possible. Nevertheless, as we demonstrated, the framework allows
the creation of new policies that are completely verified. This work focuses on
the specific and important area of verified password checking and we believe that
it lays a foundation for further research in this area.

Future Work A domain-specific language (DSL) is in development as a direct
successor to this research which will allow Linux system administrators to quickly
and easily express their ideal password quality policy and produce a verified
password quality checker PAM module in one compilation step. We anticipate
that this will offer a great deal of flexibility beyond the simple configuration
options offered by existing password quality checking PAM modules.

In continuing this work, we hope to substantially reduce the size of the un-
verified C driver by stripping out functionality that is not absolutely necessary
or that has been made redundant by our verification efforts. We also plan to
verify other aspects of the PAM modules such as configuration option parsing as
well as extend the functionality of the verified password quality checking code to
include dictionary checks. An examination of the feasibility of adding Unicode
support is also planned.

References

[1] Andrew W Appel. “Modular Verification for Computer Security”. In: IEEE
29th Computer Security Foundations Symposium (CSF). 2016, pp. 1–8.

[2] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco
Raimondi. “CoSMeDis: A Distributed Social Media Platform with For-
mally Verified Confidentiality Guarantees”. In: Security and Privacy (SP).
2017.



14 REFERENCES

[3] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development – Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[4] Bruno Blanchet et al. “An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules.” In: CSFW. Vol. 1. 2001, pp. 82–96.

[5] Mark Burnett. Today I Am Releasing Ten Million Passwords. https :

/ / xato . net / today - i - am - releasing - ten - million - passwords -

b6278bbe7495. Accessed: 2017-04-26. 2015.
[6] Ran Canetti and Jonathan Herzog. “Universally composable symbolic anal-

ysis of mutual authentication and key-exchange protocols”. In: Theory of
Cryptography Conference. Springer. 2006, pp. 380–403.

[7] National Cyber Security Centre. Password Guidance: Simplifying Your
Approach. https://www.ncsc.gov.uk/guidance/password-guidance-
simplifying-your-approach. Accessed: 2017-04-26. 2016.

[8] Tej Chajed, Haogang Chen, Adam Chlipala, M Frans Kaashoek, Nickolai
Zeldovich, and Daniel Ziegler. “Certifying a file system using crash Hoare
logic: correctness in the presence of crashes”. In: Communications of the
ACM 60.4 (2017), pp. 75–84.

[9] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek,
and Nickolai Zeldovich. “Using Crash Hoare logic for certifying the FSCQ
file system”. In: Proceedings of the 25th Symposium on Operating Systems
Principles. ACM. 2015, pp. 18–37.

[10] Adam Chlipala. Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant. MIT Press, 2013.

[11] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. “Password strength:
An empirical analysis”. In: INFOCOM. IEEE. 2010, pp. 1–9.

[12] Bruno Dutertre and Steve Schneider. “Using a PVS embedding of CSP
to verify authentication protocols”. In: Theorem Proving in Higher Order
Logics (1997), pp. 121–136.

[13] Sigbjorn Finne, Inc Fergus Henderson, Marcin Kowalczyk, Daan Leijen,
Simon Marlow, Erik Meijer, Simon Peyton Jones, and Malcolm Wallace.
The Haskell 98 Foreign Function Interface 1.0 An Addendum to the Haskell
98 Report. 2002.

[14] Richard W Hamming. Coding and Theory. Prentice-Hall, 1980.
[15] Richard W Hamming. “Error detecting and error correcting codes”. In:

Bell Labs Technical Journal 29.2 (1950), pp. 147–160.
[16] Philip G Inglesant and M Angela Sasse. “The true cost of unusable pass-

word policies: password use in the wild”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM. 2010.

[17] Mirek Jahoda, Robert Krátký, Martin Prpič, Tomáš Čapek, Stephen Wade-
ley, Yoana Ruseva, and Miroslav Svoboda. Red Hat Enterprise Linux 7
Security Guide. https : / / access . redhat . com / documentation / en -

US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html.
Accessed: 2017-04-26. 2017.



REFERENCES 15

[18] Saul Johnson. Behavior of maxclassrepeat=1 inconsistent with docs. https:
//github.com/linux-pam/linux-pam/issues/16. Accessed: 2017-03-31.
2017.

[19] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[20] Sudeep Kanav, Peter Lammich, and Andrei Popescu. “A conference man-
agement system with verified document confidentiality”. In: International
Conference on Computer Aided Verification. Springer. 2014, pp. 167–183.

[21] Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek, Richard
Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
and Julio Lopez. “Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms”. In: Security and
Privacy (SP). IEEE. 2012, pp. 523–537.

[22] Software Reliability Lab. Verified PAM Cracklib. https://github.com/
sr-lab/verified-pam-cracklib. Accessed: 2017-04-05. 2017.

[23] Software Reliability Lab. Verified PAM Environment. https://github.
com/sr-lab/verified-pam-environment. Accessed: 2017-03-30. 2017.

[24] Pierre Letouzey. “Extraction in Coq: An overview”. In: Conference on
Computability in Europe. Springer. 2008, pp. 359–369.

[25] Andrew G Morgan and Thorsten Kukuk. The Linux-PAM Module Writers’
Guide. 2010.

[26] Vipin Samar. “Unified login with pluggable authentication modules (PAM)”.
In: Proceedings of the 3rd ACM conference on Computer and Communi-
cations Security. 1996, pp. 1–10.

[27] Steve Schneider. “Verifying authentication protocols in CSP”. In: IEEE
Transactions on Software Engineering 24.9 (1998), pp. 741–758.

[28] Richard Shay, Saranga Komanduri, Adam L Durity, Phillip Seyoung Huh,
Michelle L Mazurek, Sean M Segreti, Blase Ur, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. “Designing password policies for strength and us-
ability”. In: ACM Transactions on Information and System Security (TIS-
SEC) 18.4 (2016), p. 13.

[29] Hung-Min Sun, Yao-Hsin Chen, and Yue-Hsun Lin. “oPass: A user au-
thentication protocol resistant to password stealing and password reuse
attacks”. In: IEEE Transactions on Information Forensics and Security
7.2 (2012), pp. 651–663.

[30] Simon Thompson. “Functional programming: executable specifications and
program transformations”. In: ACM SIGSOFT Software Engineering Notes.
Vol. 14. 3. 1989, pp. 287–290.

[31] Joost Visser, José Nuno Fonseca Oliveira, LS Barbosa, João Fernando
Ferreira, and Alexandra Mendes. “CAMILA revival: VDM meets Haskell”.
In: 1st Overture Workshop. University of Newcastle TR series. 2005.

[32] Leah Zhang-Kennedy, Sonia Chiasson, and Paul van Oorschot. “Revisiting
password rules: facilitating human management of passwords”. In: APWG
Symposium on Electronic Crime Research (eCrime). IEEE. 2016, pp. 1–10.


