8,262 research outputs found

    Multimedia Training Systems for the Fortune 1,000 Companies: Empirical Findings

    Get PDF

    Limits of Binaries That Can Be Characterized by Gravitational Microlensing

    Full text link
    Due to the high efficiency of planet detections, current microlensing planet searches focus on high-magnification events. High-magnification events are sensitive to remote binary companions as well and thus a sample of wide-separation binaries are expected to be collected as a byproduct. In this paper, we show that characterizing binaries for a portion of this sample will be difficult due to the degeneracy of the binary-lensing parameters. This degeneracy arises because the perturbation induced by the binary companion is well approximated by the Chang-Refsdal lensing for binaries with separations greater than a certain limit. For binaries composed of equal mass lenses, we find that the lens binarity can be noticed up to the separations of ∌60\sim 60 times of the Einstein radius corresponding to the mass of each lens. Among these binaries, however, we find that the lensing parameters can be determined only for a portion of binaries with separations less than ∌20\sim 20 times of the Einstein radius.Comment: 5 pages, 3 figures, 1 tabl

    Spectacular X-ray tails, intracluster star formation and ULXs in A3627

    Full text link
    We present the discovery of spectacular double X-ray tails associated with ESO137-001 and a possibly heated X-ray tail associated with ESO137-002, both late-type galaxies in the closest rich cluster Abell 3627. A deep Chandra observation of ESO137-001 allows us for the first time to examine the spatial and spectral properties of such X-ray tails in detail. Besides the known bright tail that extends to ~ 80 kpc from ESO137-001, a fainter and narrower secondary tail with a similar length was surprisingly revealed. There is little temperature variation along both tails. We also identified six X-ray point sources as candidates of intracluster ULXs with L(0.3-10 keV) of up to 2.5x10^40 erg s^-1. Gemini spectra of intracluster HII regions downstream of ESO137-001 are also presented, as well as the velocity map of these HII regions that shows the imprint of ESO137-001's disk rotation. For the first time, we unambiguously know that active star formation can happen in the cold ISM stripped by ICM ram pressure and it may contribute a significant amount of the intracluster light. We also report the discovery of a 40 kpc X-ray tail of another late-type galaxy in A3627, ESO137-002. Its X-ray tail seems hot, ~ 2 keV (compared to ~ 0.8 keV for ESO137-001's tails). We conclude that the high pressure environment around these two galaxies is important for their bright X-ray tails and the intracluster star formation.Comment: ApJ in press, January 2010, v708, only several minor word changes, emulateapj5.sty, 24 pages, 11 color + 5 B/W figures (figure quality degraded) and 4 tables. The abstract has been abbreviated. A high-resolution PDF is available at: http://www.astro.virginia.edu/~ms4ar/eso137_p3.pd

    A UV to Mid-IR Study of AGN Selection

    Get PDF
    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 sq. deg Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC/MIPS) data, as well as spectroscopic redshifts for ~20,000 objects, primarily from the AGN and Galaxy Evolution Survey (AGES). We fit galaxy, AGN, stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are sigma/(1+z)=0.040 and sigma/(1+z)=0.169, respectively, with the worst 5% outliers excluded. Based on the reduced chi-squared of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I=23.5. We compare the SED fits for a galaxy-only model and a galaxy+AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGN, including spatially resolved AGN with significant contributions from the host galaxy and objects with the emission line ratios of "composite" spectra. We also use our results to compare to the X-ray, mid-IR, optical color and emission line ratio selection techniques. For an F-ratio threshold of F>10 we find 16,266 AGN candidates brighter than I=23.5 and a surface density of ~1900 AGN per deg^2.Comment: Submitted to ApJ, 35 pages, 17 figures, 2 table

    Microlensing Detections of Planets in Binary Stellar Systems

    Full text link
    We demonstrate that microlensing can be used for detecting planets in binary stellar systems. This is possible because in the geometry of planetary binary systems where the planet orbits one of the binary component and the other binary star is located at a large distance, both planet and secondary companion produce perturbations at a common region around the planet-hosting binary star and thus the signatures of both planet and binary companion can be detected in the light curves of high-magnification lensing events. We find that identifying planets in binary systems is optimized when the secondary is located in a certain range which depends on the type of the planet. The proposed method can detect planets with masses down to one tenth of the Jupiter mass in binaries with separations <~ 100 AU. These ranges of planet mass and binary separation are not covered by other methods and thus microlensing would be able to make the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma

    Hot gas in Mach cones around Virgo Cluster spiral galaxies

    Get PDF
    The detailed comparison between observations and simulations of ram pressure stripped spiral galaxies in the Virgo cluster has led to a three dimensional view of the galaxy orbits within the hot intracluster medium. The 3D velocities and Mach numbers derived from simulations can be used to derive simple Mach cone geometries for Virgo spiral galaxies. We search for indications of hot gas within Mach cones in X-ray observations of selected Virgo Cluster spiral galaxies (NGC 4569, NGC 4388, and NGC 4501). We find extraplanar diffuse X-ray emission in all galaxies. Based on the 3D velocity vectors from dynamical modelling a simple Mach cone is fitted to the triangular shape of NGC 4569's diffuse X-ray emission. Assuming that all extraplanar diffuse X-ray emission has to be located inside the Mach cone, we also fit Mach cones to NGC 4388's and NGC 4501's extraplanar X-ray emission. For NGC 4569 it is hard to reconcile the derived Mach cone opening angle with a Mach number based on the sound speed alone. Instead, a Mach number involving the Alfv\'enic speed seems to be more appropriate, yielding a magnetic field strength of ∌3\sim 3-6 ÎŒ\muG for a intracluster medium density of n∌10−4n \sim 10^{-4} cm−3^{-3}. Whereas the temperature of the hot component of NGC 4569's X-ray halo (0.5 keV) is at the high end but typical for a galactic outflow, the temperature of the hot gas tails of NGC 4388 and NGC 4501 are significantly hotter (0.7-0.9 keV). In NGC 4569 we find direct evidence for a Mach cone which is filled with hot gas from a galactic superwind. We suggest that the high gas temperatures in the X-ray tails of NGC 4388 and NGC 4501 are due to the mixing of the stripped ISM into the hot intracluster medium of the Virgo cluster.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in Astronomy and Astrophysic

    Deformation of quantum mechanics in fractional-dimensional space

    Get PDF
    A new kind of deformed calculus (the D-deformed calculus) that takes place in fractional-dimensional spaces is presented. The D-deformed calculus is shown to be an appropriate tool for treating fractional-dimensional systems in a simple way and quite analogous to their corresponding one-dimensional partners. Two simple systems, the free particle and the harmonic oscillator in fractional- dimensional spaces are reconsidered into the framework of the D-deformed quantum mechanics. Confined states in a D-deformed quantum well are studied. D-deformed coherent states are also found.Comment: 12 pages, some misprints have been corrected, two figures are adde

    Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 206 (2017): 151-165, doi:10.1016/j.gca.2017.02.016.To constrain the Mg isotopic composition of the oceanic mantle, investigate Mg isotope fractionation of abyssal peridotites during seafloor alteration, and assess Mg budget in the oceans, a suite of 32 abyssal peridotite samples from the Gakkel Ridge and Southwest Indian Ridge (SWIR) was, for the first time, selected for high-precision Mg isotope analyses. Although most of these samples are extensively altered, largely by serpentinization and weathering, primary olivine, diopside and enstatite grains are preserved in some samples. Olivine grains from the least altered samples have ÎŽ26Mg varying from −0.30 to −0.12‰ (n = 7), whereas enstatite and diopside have ÎŽ26Mg varying from −0.27 to −0.16‰ (n = 7), and from −0.23 to −0.09‰ (n = 6), respectively. Whole-rock ÎŽ26Mg values range from −0.24 to 0.03‰ with an average of −0.12 ± 0.13‰ (2SD, n = 32). Strongly serpentinized peridotites have lower average ÎŽ26Mg values (ÎŽ26Mg = −0.19 ± 0.07‰, 2SD, n = 7) than weathering-dominated ones (ÎŽ26Mg = −0.10 ± 0.12‰, 2SD, n = 25). Calculated Mg isotopic compositions of fresh mantle peridotites vary from −0.29 to −0.13‰, beyond the previously reported range of the subcontinental lithospheric mantle (−0.25 ± 0.04‰) and the analytical uncertainty (±0.07‰, 2SD). Our study therefore indicates that the oceanic mantle may have similar but slightly heterogeneous Mg isotopic compositions to that of subcontinental lithospheric mantle. Secondary serpentinization does not fractionate Mg isotopes of abyssal peridotites, whereas low-T weathering and formation of clay can result in the enrichment of heavy Mg isotopes in abyssal peridotites. This study also demonstrates that fluid-rock interaction does not necessarily produce rocks with intermediate Mg isotopic compositions. Magnesium isotopes of the rocks thereafter are dependent on the secondary minerals formed. We also conclude that the release of light Mg isotopes into the ocean during alteration of abyssal peridotites can be an important influx of Mg for the seawater Mg budget. Abyssal peridotites with a heavy Mg isotopic signature can be recycled into the mantle in subduction zones and may thus result in heterogeneous Mg isotopic compositions of the oceanic mantle and heavy Mg isotopic compositions of arc magmas.This study was supported by grants from the National Science Foundation of China (grants 41473038 and 41503010), China Postdoctoral Science Foundation (2015M570145), National Science Foundation (EAR-1056713 and EAR-1340160) and project MOST104 -2745-M-002-001-ASP granted to SLC. Partial support for HJBD was provided by the US National Science Foundation (OCE-1434452)
    • 

    corecore