We demonstrate that microlensing can be used for detecting planets in binary
stellar systems. This is possible because in the geometry of planetary binary
systems where the planet orbits one of the binary component and the other
binary star is located at a large distance, both planet and secondary companion
produce perturbations at a common region around the planet-hosting binary star
and thus the signatures of both planet and binary companion can be detected in
the light curves of high-magnification lensing events. We find that identifying
planets in binary systems is optimized when the secondary is located in a
certain range which depends on the type of the planet. The proposed method can
detect planets with masses down to one tenth of the Jupiter mass in binaries
with separations <~ 100 AU. These ranges of planet mass and binary separation
are not covered by other methods and thus microlensing would be able to make
the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma