244 research outputs found

    Adhesive performance of camelina protein affected by extraction conditions

    Get PDF
    Citation: Qi, G., Li, N., Sun, X. S., & Wang, D. (2016). Adhesive performance of camelina protein affected by extraction conditions. Transactions of the Asabe, 59(3), 1083-1090. doi:10.13031/trans.59.11686Camelina protein (CP) adhesives were prepared from de-hulled camelina meal using alkaline solubilization (CP 8, CP 9, CP 10, CP 11, CP 12) and isolelectric precipitation. CP 12 had the highest protein yield with 46.22%, more than twice that of CP 8 (22.71%), indicating that extreme alkaline pH is necessary for high camelina protein solubility and protein yield. Extreme alkalinization resulted in severe molecular dissociation of camelina protein, as indicated by the appearance of a low molecular weight band (20 kDa). Compared to CP 8, CP 9, CP 10, and CP 11, CP 12 had a completely denatured protein structure with greater amounts of exposed functional groups, which is beneficial to the adhesion strength of CP 12. CP 12 with 9% sodium chloride treatment demonstrated optimum adhesion performance with dry and wet strengths of 4.36 and 1.36 MPa, respectively, compared to 3.37 and 1.05 MPa for CP 12 without sodium chloride treatment. © 2016 American Society of Agricultural and Biological Engineers

    Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed

    Get PDF
    Hempseed products has been used as nutraceutical supplements and pharmaceutical products. However, hempseed has been underutilized as a food crop for human consumption. To fill the gap of limited knowledge of the variation of hempseed for food consumption, thirteen hemp varieties were selected to evaluate the effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. The tested hempseed contains 26.48–32.03% crude protein with average of 28.48%, 28.03–33.23% crude oil with average of 29.54%, 28.78–36.55% crude fiber with average of 33.49%, and 5.43%–6.32% ash with average of 5.89. Average test weight of 36.85 lbs/bu was relatively low compared to the standard test weight of 44 lbs/bu. Hempseed oil contained high portions of about 80% unsaturated fatty acids such as linoleic and α-linolenic acid. The DPPH scavenging activities varied greatly (0.37–28.78%) for the hydrolysates from different hempseed varieties. This study provides comprehensive understanding of the nutritional value of hempseed for human food and potential of a new crop in agricultural food system

    Geo6D: Geometric Constraints Learning for 6D Pose Estimation

    Full text link
    Numerous 6D pose estimation methods have been proposed that employ end-to-end regression to directly estimate the target pose parameters. Since the visible features of objects are implicitly influenced by their poses, the network allows inferring the pose by analyzing the differences in features in the visible region. However, due to the unpredictable and unrestricted range of pose variations, the implicitly learned visible feature-pose constraints are insufficiently covered by the training samples, making the network vulnerable to unseen object poses. To tackle these challenges, we proposed a novel geometric constraints learning approach called Geo6D for direct regression 6D pose estimation methods. It introduces a pose transformation formula expressed in relative offset representation, which is leveraged as geometric constraints to reconstruct the input and output targets of the network. These reconstructed data enable the network to estimate the pose based on explicit geometric constraints and relative offset representation mitigates the issue of the pose distribution gap. Extensive experimental results show that when equipped with Geo6D, the direct 6D methods achieve state-of-the-art performance on multiple datasets and demonstrate significant effectiveness, even with only 10% amount of data

    Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts

    Get PDF
    This is the final version of the article. Available from American Society for Microbiology via the DOI in this record.Understanding the genetic basis of host shifts is a key genomic question for pathogen and parasite biology. The Bacillus cereus group, which encompasses Bacillus thuringiensis and Bacillus anthracis, contains pathogens that can infect insects, nematodes, and vertebrates. Since the target range of the essential virulence factors (Cry toxins) and many isolates is well known, this group presents a powerful system for investigating how pathogens can diversify and adapt to phylogenetically distant hosts. Specialization to exploit insects occurs at the level of the major clade and is associated with substantial changes in the core genome, and host switching between insect orders has occurred repeatedly within subclades. The transfer of plasmids with linked cry genes may account for much of the adaptation to particular insect orders, and network analysis implies that host specialization has produced strong associations between key toxin genes with similar targets. Analysis of the distribution of plasmid minireplicons shows that plasmids with orf156 and orf157, which carry genes encoding toxins against Lepidoptera or Diptera, were contained only by B. thuringiensis in the specialized insect clade (clade 2), indicating that tight genome/plasmid associations have been important in adaptation to invertebrate hosts. Moreover, the accumulation of multiple virulence factors on transposable elements suggests that cotransfer of diverse virulence factors is advantageous in terms of expanding the insecticidal spectrum, overcoming insect resistance, or through gains in pathogenicity via synergistic interactions between toxins.IMPORTANCE Population genomics have provided many new insights into the formation, evolution, and dynamics of bacterial pathogens of humans and other higher animals, but these pathogens usually have very narrow host ranges. As a pathogen of insects and nematodes, Bacillus thuringiensis, which produces toxins showing toxicity to many orders of insects and other invertebrates, can be used as a model to study the evolution of pathogens with wide host ranges. Phylogenomic analysis revealed that host specialization and switching occur at the level of the major clade and subclade, respectively. A toxin gene co-occurrence network indicates that multiple toxins with similar targets were accumulated by the same cell in the whole species. This accumulation may be one of the strategies that B. thuringiensis has used to fight against host resistance. This kind of formation and evolution of pathogens represents a different path used against multiple invertebrate hosts from that used against higher animals.This work was supported by the National Key Research and Development Program of China (2017YFD0201201), the China 948 Program of the Ministry of Agriculture (2016-X21), the National Natural Science Foundation of China (NSFC) (31500003 and 31670085), the China Postdoctoral Science Foundation-funded project (2015M580649 and 2016T90700), and Chinese Fundamental Research Funds for the Central Universities (2662016QD039, 2662015PY123, and 2662017PY094)

    Gene Clusters Located on Two Large Plasmids Determine Spore Crystal Association (SCA) in Bacillus thuringiensis Subsp. finitimus Strain YBT-020

    Get PDF
    Crystals in Bacillus thuringiensis are usually formed in the mother cell compartment during sporulation and are separated from the spores after mother cell lysis. In a few strains, crystals are produced inside the exosporium and are associated with the spores after sporulation. This special phenotype, named ‘spore crystal association’ (SCA), typically occurs in B. thuringiensis subsp. finitimus. Our aim was to identify genes determining the SCA phenotype in B. thuringiensis subsp. finitimus strain YBT-020. Plasmid conjugation experiments indicated that the SCA phenotype in this strain was tightly linked with two large plasmids (pBMB26 and pBMB28). A shuttle bacterial artificial chromosome (BAC) library of strain YBT-020 was constructed. Six fragments from BAC clones were screened from this library and discovered to cover the full length of pBMB26; four others were found to cover pBMB28. Using fragment complementation testing, two fragments, each of approximately 35 kb and located on pBMB26 and pBMB28, were observed to recover the SCA phenotype in an acrystalliferous mutant, B. thuringiensis strain BMB171. Furthermore, deletion analysis indicated that the crystal protein gene cry26Aa from pBMB26, along with five genes from pBMB28, were indispensable to the SCA phenotype. Gene disruption and frame-shift mutation analyses revealed that two of the five genes from pBMB28, which showed low similarity to crystal proteins, determined the location of crystals inside the exosporium. Gene disruption revealed that the three remaining genes, similar to spore germination genes, contributed to the stability of the SCA phenotype in strain YBT-020. Our results thus identified the genes determining the SCA phenotype in B. thuringiensis subsp. finitimus

    Single Amino Acid Substitution in Homogentisate Dioxygenase Affects Melanin Production in Bacillus thuringiensis

    Get PDF
    Bacillus thuringiensis formulation losing its activity under field conditions due to UV radiation and photoprotection of B. thuringiensis based on melanin has attracted the attention of researchers for many years. Here, a single amino acid substitution (G272E) in homogentisate 1,2-dioxygenase was found to be responsible for pigment overproduction in B. thuringiensis BMB181, a derivative of BMB171. Disrupting the gene encoding homogentisate dioxygenase in BMB171 induced the accumulation of the homogentisic acid and provoked an increased pigment formation. To gain insights into homogentisate 1,2-dioxygenase in B. thuringiensis, we constructed a total of 14 mutations with a single amino acid substitution, and six of the mutant proteins were found to affect the melanin production when substituted by alanine. This study provides a new way to construct pigment-overproducing strains by impairing the homogentisate dioxygenase with a single mutation in B. thuringiensis, and the findings will facilitate a better understanding of this enzyme
    corecore