19 research outputs found
Recommended from our members
Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular films
Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon–carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction
Electrically Tunable Reactivity of Substrate-Supported Cobalt Oxide Nanocrystals
[EN] First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α-region), while the less abundant is 1Co:1Au coincidental (β-region). As a result of the surface registry, in the β-region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip-induced voltage pulses irreversibly transform α- into β-regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.This work was supported by the European Union under the H2020 FET-PROACT A-LEAF (Artificial-Leaf ) project (Grant Agreement No. 732840). Barcelona Supercomputing Center. Grant Number: QS-2019-3-002
Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms
BACKGROUND:
In humans, interferon-α treatment for chronic viral hepatitis is a well-recognized clinical model for inflammation-induced depression, but the molecular mechanisms underlying these effects are not clear. Following peripheral administration in rodents, interferon-α induces signal transducer and activator of transcription-1 (STAT1) within the hippocampus and disrupts hippocampal neurogenesis.
METHODS:
We used the human hippocampal progenitor cell line HPC0A07/03C to evaluate the effects of 2 concentrations of interferon-α, similar to those observed in human serum during its therapeutic use (500 pg/mL and 5000 pg/mL), on neurogenesis and apoptosis.
RESULTS:
Both concentrations of interferon-α decreased hippocampal neurogenesis, with the high concentration also increasing apoptosis. Moreover, interferon-α increased the expression of interferon-stimulated gene 15 (ISG15), ubiquitin-specific peptidase 18 (USP18), and interleukin-6 (IL-6) via activation of STAT1. Like interferon-α, co-treatment with a combination of ISG15, USP18, and IL-6 was able to reduce neurogenesis and enhance apoptosis via further downstream activation of STAT1. Further experiments showed that ISG15 and USP18 mediated the interferon-α-induced reduction in neurogenesis (potentially through upregulation of the ISGylation-related proteins UBA7, UBE2L6, and HERC5), while IL-6 mediated the interferon-α-induced increase in apoptosis (potentially through downregulation of aquaporin 4). Using transcriptomic analyses, we showed that interferon-α regulated pathways involved in oxidative stress and immune response (e.g., Nuclear Factor (erythroid-derived 2)-like 2 [Nrf2] and interferon regulatory factor [IRF] signaling pathway), neuronal formation (e.g., CAMP response element-binding protein [CREB] signaling), and cell death regulation (e.g., tumor protein(p)53 signaling).
CONCLUSIONS:
We identify novel molecular mechanisms mediating the effects of interferon-α on the human hippocampus potentially involved in inflammation-induced neuropsychiatric symptoms
Repeated exposure to systemic inflammation and risk of new depressive symptoms among older adults.
Evidence on systemic inflammation as a risk factor for future depression is inconsistent, possibly due to a lack of regard for persistency of exposure. We examined whether being inflamed on multiple occasions increases risk of new depressive symptoms using prospective data from a population-based sample of adults aged 50 years or older (the English Longitudinal Study of Ageing). Participants with less than four of eight depressive symptoms in 2004/05 and 2008/09 based on the Eight-item Centre for Epidemiologic Studies Depression scale were analysed. The number of occasions with C-reactive protein ⩾3 mg l-1 over the same initial assessments (1 vs 0 occasion, and 2 vs 0 occasions) was examined in relation to change in depressive symptoms between 2008/09 and 2012/13 and odds of developing depressive symptomology (having more than or equal to four of eight symptoms) in 2012/13. In multivariable-adjusted regression models (n=2068), participants who were inflamed on 1 vs 0 occasion showed no increase in depressive symptoms nor raised odds of developing depressive symptomology; those inflamed on 2 vs 0 occasions showed a 0.10 (95% confidence intervals (CIs)=-0.07, 0.28) symptom increase and 1.60 (95% CI=1.00, 2.55) times higher odds. In further analyses, 2 vs 0 occasions of inflammation were associated with increased odds of developing depressive symptoms among women (odds ratio (OR)=2.75, 95% CI=1.53, 4.95), but not among men (OR=0.70, 95% CI=0.29, 1.68); P-for-sex interaction=0.035. In this cohort study of older adults, repeated but not transient exposure to systemic inflammation was associated with increased risk of future depressive symptoms among women; this subgroup finding requires confirmation of validity
Recommended from our members
Effects of immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized, placebo-controlled clinical trials in inflammatory disorders
Funder: GlaxoSmithKlineFunder: Janssen Research & Development, LLCAbstract: Activation of the innate immune system is commonly associated with depression. Immunomodulatory drugs may have efficacy for depressive symptoms that are co-morbidly associated with inflammatory disorders. We report a large-scale re-analysis by standardized procedures (mega-analysis) of patient-level data combined from 18 randomized clinical trials conducted by Janssen or GlaxoSmithKline for one of nine disorders (N = 10,743 participants). Core depressive symptoms (low mood, anhedonia) were measured by the Short Form Survey (SF-36) or the Hospital Anxiety and Depression Scale (HADS), and participants were stratified into high (N = 1921) versus low-depressive strata based on baseline ratings. Placebo-controlled change from baseline after 4–16 weeks of treatment was estimated by the standardized mean difference (SMD) over all trials and for each subgroup of trials targeting one of 7 mechanisms (IL-6, TNF-α, IL-12/23, CD20, COX2, BLγS, p38/MAPK14). Patients in the high depressive stratum showed modest but significant effects on core depressive symptoms (SMD = 0.29, 95% CI [0.12–0.45]) and related SF-36 measures of mental health and vitality. Anti-IL-6 antibodies (SMD = 0.8, 95% CI [0.20–1.41]) and an anti-IL-12/23 antibody (SMD = 0.48, 95% CI [0.26–0.70]) had larger effects on depressive symptoms than other drug classes. Adjustments for physical health outcome marginally attenuated the average treatment effect on depressive symptoms (SMD = 0.20, 95% CI: 0.06–0.35), but more strongly attenuated effects on mental health and vitality. Effects of anti-IL-12/23 remained significant and anti-IL-6 antibodies became a trend after controlling for physical response to treatment. Novel immune-therapeutics can produce antidepressant effects in depressed patients with primary inflammatory disorders that are not entirely explained by treatment-related changes in physical health
Phase Target-Based Calibration of Projector Radial Chromatic Aberration for Color Fringe 3D Measurement Systems
The camera and projector are indispensable hardware parts of a color fringe projection 3D measurement system. Chromatic aberration between different color channels of the projector and camera has an impact on the measurement accuracy of the color fringe projection 3D profile measurement. There are many studies on camera calibration, but the chromatic aberration of the projector remains a question deserving of further investigation. In view of the complex system architecture and theoretical derivation of the traditional projector radial chromatic aberration method, a phase target based on projector radial chromatic aberration measurement and the correction method are proposed in this paper. This method uses a liquid crystal display with a holographic projection film as the phase target. The liquid crystal display sequentially displays red, green, and blue horizontal and vertical sinusoidal fringe images. The projector projects red, green, and blue horizontal and vertical sinusoidal fringe images to the phase target in turn, and calculates the absolute phases of the display fringes and reflection fringes, respectively. Taking the green channel as the reference channel, a phase coordinate system is established based on the phases of the vertical and horizontal directions displayed on the display screen, using the phase of the reflection fringes on the display screen as the ideal phase value of the phase point. Then, the phase coordinate system of the red and blue channels is transferred to the green phase coordinate system to calculate the chromatic aberration of the red-green channels and the blue-green channels, and pre-compensation is conducted. Experimental results prove that this method can measure and calibrate the radial chromatic aberration of the projector without being affected by the image quality of the camera. The correction effect of this method is that the maximum chromatic aberration of the red-green channel decreases from 1.9591/pixel to 0.5759/pixel, and the average chromatic aberration decreases from 0.2555/pixel to 0.1865/pixel. In addition, blue-green channel maximum chromatic aberration decreased from 1.8906/pixel to 0.5938/pixel, and the average chromatic aberration decreased from 0.2347/pixel to 0.1907/pixel. This method can improve the projection quality for fringe projection 3D profile measurement technology
Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions.
Well-characterized
metal oxides supported on single crystal surfaces
serve as valuable model systems to study fundamental chemical properties
and reaction mechanisms in heterogeneous catalysis or as new thin
film metal oxide catalysts in their own right. Here, we present scanning
tunneling microscopy and X-ray photoelectron spectroscopy results
for cobalt oxide nanoislands that reveal the detailed atomistic mechanisms
leading to transitions between Co–O bilayer and O–Co–O
trilayer, induced by oxidation in O<sub>2</sub> and reductive vacuum
annealing treatments, respectively. By comparing between two different
noble metal substrates, Au(111) and Pt(111), we further address the
influence of the substrate. Overall, nanoisland edges act to initiate
both the oxidation and reduction processes on both substrates. However,
important influences of the choice of substrate were found, as the
progress of oxidation includes intermediate steps on Au(111) not observed
on Pt(111), where the oxidation on the other hand takes place at a
significantly higher rate. During reductive treatment of trilayer,
the bilayer structure gradually reappears on Pt(111), but not on Au(111)
where the reduction rather results in the appearance of a stacked
cobalt oxide morphology. These observations point to strong differences
in the catalytic behavior between Au and Pt supported cobalt oxides,
despite the otherwise strong structural similarities
Structure and Stability of Au-Supported Layered Cobalt Oxide Nanoislands in Ambient Conditions
Cobalt oxide is a
promising earth-abundant electrocatalyst for
water splitting; however, the structural complexity of oxides coupled
with the difficulty of characterizing it in its operating environment
means that fundamental understanding of its catalytic properties remains
poor. In this study, we go beyond vacuum studies and investigate the
morphological evolution of a CoO<sub><i>x</i></sub>/AuÂ(111)
model system from intermediate to high pressures of H<sub>2</sub>O
vapor by means of scanning tunneling microscopy and near-ambient pressure
and vacuum X-ray photoelectron spectroscopy. At elevated H<sub>2</sub>O pressure, we describe the formation of a well-defined CoÂ(OH)<sub>2</sub> nanoisland morphology with cobalt in the +2 oxidation state.
In contrast, the presence of O<sub>2</sub>, in air and liquid water,
results in only partially hydroxylated Co<sup>3+</sup> phases comprising
sheets of the CoOÂ(OH<sub><i>x</i></sub>) trilayer, corresponding
to a single sheet of cobaltÂ(III)Âoxyhydroxide. We conclude that the
oxyhydroxide structure, known to be the catalytically active phase
for the oxygen evolution reaction, is stabilized by aerobic conditions,
which inhibits further transformation into the catalytically inactive
cobaltÂ(II)Âhydroxide
Can the CO2 Reduction Reaction be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces
Cu is currently the most effective monometallic catalyst for producing valuable multi-carbon-based products, such as ethylene and ethanol, from the CO2 reduction reaction (CO2RR). One approach to optimize the activity and selectivity of the metal Cu catalyst is to functionalize the Cu electrode with a molecular modifier.
We investigate from a data standpoint whether any reported functionalized Cu catalyst improves the intrinsic activity and/or multi-carbon product selectivity compared to the performance of bare Cu foil and the best single crystal Cu facets. Our analysis shows that the reported increases in activity are due to increased surface roughness and disappear once normalizing with respect to electrochemical surface area. The intrinsic activity generally falls below that of bare Cu foil, both for total and product-specific current, which we attribute to non-selective blocking of active sites by the modifier on the surface. Instead, we show that the modifier allows for easier diffusion of CO2 compared to H2O to the surface, leading to greater selectivity for CO2RR and C2+ products. As such, our analysis finds no catalyst for CO2RR that intrinsically outperforms bare Cu