128 research outputs found

    Study of the Counter Anions in the Host-Guest Chemistry of Cucurbit[8]uril and 1-Ethyl-1′-benzyl-4,4′-bipyridinium

    Get PDF
    A series of 1-ethyl-1′-benzyl-4,4′-bipyridinium compounds with different counter anions (BEV-X2, where the X is Cl, Br, I, PF6, ClO4) were synthesized. By using of NMR, MS, electrochemistry, Na2S2O4-induced redox chemistry, and UV-Vis, the role of the different counter anions in the host-guest chemistry of cucurbit[8]uril (CB[8]) was studied for the first time. The result demonstrated that BEV-X2 can form a 1 : 1 host-guest complex with CB[8] in water. Theoretical calculation further suggested that the viologen region was threaded through the cavity of CB[8], while the corresponding counter anions were located outside the cavity. Some difference can be observed on UV-Vis titration and Na2S2O4-induced redox chemistry, which showed that the counter anions have some effect on the host-guest chemistry. All these provide new insights into CB[8] host-guest system

    Testing the mantle plume hypothesis: An IODP effort to drill into the Kamchatka-Okhotsk Sea system

    Get PDF
    The great mantle plume debate (GPD) has been going on for ∼15 years (Foulger and Natland, 2003; Anderson, 2004; Niu, 2005; Davies, 2005; Foulger, 2005; Campbell, 2005; Campbell and Davies, 2006), centered on whether mantle plumes exist as a result of Earth’s cooling or whether their existence is purely required for convenience in explaining certain Earth phenomena (Niu, 2005). Despite the mounting evidence that many of the so-called plumes may be localized melting anomalies, the debate is likely to continue. We recognize that the slow progress of the debate results from communication difficulties. Many debaters may not truly appreciate (1) what the mantle plume hypothesis actually is, and (2) none of the petrological, geochemical and geophysical methods widely used can actually provide smoking-gun evidence for or against mantle plume hypothesis. In this short paper, we clarify these issues, and elaborate a geologically effective approach to test the hypothesis. According to the mantle plume hypothesis, a thermal mantle plume must originate from the thermal boundary layer at the core-mantle boundary (CMB), and a large mantle plume head is required to carry the material from the deep mantle to the surface. The plume head product in ocean basins is the oceanic plateau, which is a lithospheric terrane that is large (1000’s km across), thick (>200 km), shallow (2–4 km high above the surrounding seafloors), buoyant (∼1% less dense than the surrounding lithosphere), and thus must be preserved in the surface geology (Niu et al., 2003). The Hawaiian volcanism has been considered as the surface expression of a type mantle plume, but it does not seem to have a (known) plume head product. If this is true, the Hawaiian mantle plume in particular and the mantle plume hypothesis in general must be questioned. Therefore, whether there is an oceanic plateau-like product for the Hawaiian volcanism is key to testing the mantle plume hypothesis, and the Kamchatka-Okhotsk Sea basement is the best candidate to find out if it is indeed the Hawaiian mantle plume head product or not (Niu et al., 2003; Niu, 2004)

    Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)

    Get PDF
    Three-dimensional (3D) seismic, borehole and geochemical data reveal a prolonged phase of post-rift magmatism on highly extended crust of the Baiyun Sag, South China Sea. Two volcanic complexes are identified and described in the context of continental rifting and diachronous continental breakup of the South China Sea. Biostratigraphic data from exploration wells BY7-1 and BY2, complemented by K–Ar datings from core samples, confirm that magmatic activity in the Baiyun Sag occurred in two main stages: (1) a first episode at the base of the Miocene (23.8 Ma); and (2) a second episode occurring at the end of the Early Miocene (17.6 Ma). The relative location of volcanic complexes in the Baiyun Sag, and their stratigraphic position, reveals prolonged magmatism inboard of the ocean–continent transition zone during continental breakup. We suggest that magmatism in the Baiyun Sag reflects progressive continental breakup in the South China Sea, with the last volcanic episode marking the end of a breakup sequence representing the early post-rift tectonic events associated with the continental breakup process. Seismic and borehole data from this breakup sequence records diachronous magma emplacement and complex changes in depositional environments during continental breakup

    The Baiyun Slide Complex, South China Sea: a modern example of slope instability controlling submarine-channel incision on continental slopes

    Get PDF
    The Baiyun Slide Complex is one of the largest submarine landslides on the northern margin of the South China Sea. Newly acquired high-resolution bathymetric data, 2D and 3D seismic data permitted the systematic investigation of the Baiyun Slide Complex in terms of its seafloor morphology and associated sedimentary processes. The headwall region of the Baiyun Slide Complex, located at a water depth between 1000 m and 1700 m, is U-shaped and opens towards the east. It was efficiently and almost completely evacuated, generating pronounced headwall and sidewall scarps. Submarine channels, sediment waves, migrating channels, sediment drifts and moats are observed within and around the headwall region, illustrating the effects of both downslope and along-slope sedimentary processes. Submarine channels are 16–37 km-long 800-1500 m-wide, and 20 to 50 m-deep. As a modern example of the interplay between slope instability and subsequent incision, submarine channels were generated after the formation of the Baiyun Slide scar to suggest intensified downslope sedimentary processes after the slope collapsed. The initiation and formation of these submarine channels result from the evacuation of the Baiyun Slide scar, which provided the necessary space of the continental slope to accommodate subsequent turbidity and mass wasting flows. Our results are an important example of how submarine landslides can influence erosional and depositional processes on continental margins

    Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change

    Get PDF
    Abstract: Pre-Holocene landslides and tsunami deposits are commonly observed on continental margins and oceanic islands. However, scarce evidence has thus far linked pre-historic submarine landslides to particular tsunami events. This work focuses on an 839 km3 submarine landslide that occurred in the South China Sea at 0.54 Ma. Bathymetric restorations show that the paleoshoreline at 0.54 Ma was 180–580 km to the south of its present-day location. In such a setting, the tsunami triggered by the landslide at 0.54 Ma was able to generate larger waves with shorter arrive times when compared to an equivalent landslide-generated tsunami under present-day conditions. This observation proves that tsunamis generated by submarine landslides during sea-level lowstands caused catastrophic damage to the South China Sea coast in the past, and so will do in future sea-level lowstands. This study stresses the importance of restoring paleoshorelines for detailed analysis of historic landslide-generated tsunamis

    First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea

    Get PDF
    Carbonate platforms form informative archives for paleoclimates and their internal structures can also hold crucial information about the tectonic history and carbonate evolution of the ocean basins. The Zhongsha atoll (Macclesfield Bank) forms the largest atoll system in the South China Sea with a surface area of 23500 km2. However, the internal structure and evolution of this atoll system is completely unknown. 2D multichannel seismic reflection data were acquired in 2017 over the Zhongsha atoll in the South China Sea to unravel the stratigraphy, geomorphology, depositional processes, and seismic facies of one of the world's largest atoll for the first time. This Neogene carbonate platform comprises more than 1 km thick carbonate sequence and overlies a metamorphic basement. The southeastern part of the atoll comprises a fault-controlled graben system, which was formed during the Cenozoic rifting stage of the South China Sea. Most of the faults trend NE-SW and E-W and terminate at or slightly above the top of Middle Miocene strata. Atolls and abundant organic reefs initiated on the positive relief and closely mimicked the underlying topography during the Early Miocene. Shallow-water carbonates continued growing through Middle Miocene to present times. Regional uplift led to subaerial exposure, termination of platform growth and karstification during the Miocene. We also reveal a number of fluid-flow features such as vertical sub-bottom venting features (chimneys and pipes), chaotic reflection zones, which provide the first evidence of active fluid venting in the area of Zhongsha atoll. The Neogene sedimentation history of Zhongsha atoll further provide an important paleoenvironmental context for future scientific drilling to better constrain the evolution of Asia Monsoon

    Electrooxidation of small organic molecules at elevated temperature and pressure: an online Differential Electrochemical Mass Spectrometry (DEMS) study

    No full text
    The objective of the present work was to determine the kinetics of the electrooxidation of small organic molecules, in terms of the activity (Faradaic current) performed in a novel high temperature / high pressure thin-layer flow cell and selectivity (current efficiency for CO2 formation) obtained from the on-line differential electrochemical mass spectrometry (DEMS) by monitoring CO2 formation, on realistic carbon supported catalysts under well-defined, but nevertheless, fuel cell relevant reaction conditions (temperatures up to 100 oC, overpressure of 3 bar and continuous mass transport). The selectivity increasingly prevails at higher temperature, lower concentration and lower potentials (~ 46 % CO2 current efficiency at 100 °C, 0.1 M, 0.48 V). These trends result in a significantly higher apparent activation barrier for complete oxidation (68 ± 2 kJ mol¯¹ at 0.48 V, 0.1 M) vs. the overall ethanol oxidation reaction (42 ± 2 kJ mol¯¹ at 0.48 V, 0.1 M). The selectivity for acetaldehyde electrooxidation is ~ 80 % (at 0.5 V, 0.1 M, 100 °C) and the apparent activation barrier for complete oxidation is 39 ± 2 kJ mol¯¹ (at 0.6 V, 0.1 M) vs. overall acetaldehyde oxidation reaction (32 ± 2 kJ mol¯¹) and that for oxidation to acetic acid (27 ± 3 kJ mol¯¹). Analogous measurements on the electrooxidation of acetic acid show very low activities even at 100 °C, and a high apparent activation energy (173 ± 6 kJ mol¯¹). The electrooxidation of ethanol on Pt-based (Pt/C, PtRu black) and Pd-based (Pd/C, Pd/CeO2/C) catalysts in alkaline solution showed that the addition of Ru or CeO2 improves the tolerance at low potentials, while for higher potentials the activity of the monometallic catalysts is higher. The apparent activation energies, which are in the range of 11 - 32 kJ mol¯¹, vary significantly with potential. The results are important for further design and optimization of catalysts aiming at improvement of performance and durability relevant for direct ethanol fuel cells (DEFC)
    corecore