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A series of 1-ethyl-1-benzyl-4,4-bipyridinium compounds with different counter anions (BEV-X
2
, where the X is Cl, Br, I, PF

6
,

ClO
4
) were synthesized. By using of NMR, MS, electrochemistry, Na

2
S
2
O
4
-induced redox chemistry, and UV-Vis, the role of

the different counter anions in the host-guest chemistry of cucurbit[8]uril (CB[8]) was studied for the first time. The result
demonstrated that BEV-X

2
can form a 1 : 1 host-guest complex with CB[8] in water. Theoretical calculation further suggested that

the viologen region was threaded through the cavity of CB[8], while the corresponding counter anions were located outside the
cavity. Some difference can be observed on UV-Vis titration and Na

2
S
2
O
4
-induced redox chemistry, which showed that the counter

anions have some effect on the host-guest chemistry. All these provide new insights into CB[8] host-guest system.

1. Introduction

Since Freeman [1] and coworkers revealed its barrel-shaped
structure for the first time in 1981, cucurbit[𝑛]uril (CB[𝑛], 𝑛 =
5–12) have received great attentions in many areas. Among
them, CB[8] is the most interesting because it can accommo-
date two identical [2–5] or different [6–12] aromatic guests in
its cavity. And these kinds of host-guest systems have been
employed for the assembly of molecular amphiphiles [6],
molecular loops [13, 14], photochemistry reactions control
[15, 16], and supramolecular polymers [11, 17]. In the CB[8]
host-guest chemistry, viologen derivatives were often used
as guest molecules because of their outstanding electron-
accepting properties. The inclusion of the methyl viologen
(N,N-dimethyl-4,4-bipyridinium, MV2+) and derivatives in
CB[8] has been studied extensively both by ourselves [18–26]
and others [2–14] in recent years, and the results show that
CB[8] can bind with MV2+ and its radical MV+∙ strongly. In
particularly, CB[8] can form a 2 : 1 including complex with
the radical to form a dimer (MV+∙)

2
/CB[8]; the dimerization

constant of MV+∙ in the presence of CB[8] is estimated to
be 2 × 107M−1, which is about 105 times larger than that
of MV+∙ alone in aqueous media. The characteristic UV-Vis
absorption peaks for the radical dimer are around 370 nm,

540 nm, and 900 nm, while those for the free radical are
around 400 nm and 600 nm; all these can be employed to
distinguish them from each other [2–14, 18–20].

As we know, viologen derivatives have two positive
charges in the structure, and two counter anions are needed
to keep the molecule neutral [3, 18–26]. Although the host-
guest chemistry of viologen guest molecules with CB[8] has
been studied widely, to the best of our knowledge, no attempt
has been made to examine the effect of the counter anion
in the CB[8] host-guest system. It should be noted that the
counter anions could play crucial roles in supermolecular
assembly process of viologen derivatives with the other
hosts. For instance, complexation of crown ether derivatives
with viologen dicationic guests having univalent counterions
included two modes: (1) dissociation of the ion pair prior to
interaction of the free dication with the host to produce a
complex that is not ion-paired and (2) direct complexation
of the ion-pair to produce an ion paired complex [27]. In the
formation of a calix[6]arene wheel complex, the tosylate or
hexafluorophosphate salts of the bipyridinium-based threads
affected both the stability of the complexes and the rate of
the threading process [28]. Saielli et al. [29, 30] reported
the aggregation behavior of the octyl viologen salt with
the hydrophobic anion bis(trifluoromethanesulfonyl)amide
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in nonpolar solvents such as toluene, benzene, and chloro-
form. And the associated counter anions were found to be
responsible for the formation of the large aggregates and the
high solubility of the octyl viologen salt in nonpolar solvents.
When two viologen fragments were connected with a propyl
linker, themolecule exhibited a higher tendency for a chelate-
like complexation with chloride anions in polar DMSO/H

2
O

media, where chlorides were found to be complexed through
a dense hydrogen bond network [31], while the iodides were
found to be driven by charge-transfer processes with the
electron-deficient pyridinium rings in the crystal lattice [31].
Furthermore, halide anions were selectively recognized by
crosslinked polyviologen film because of different sizes [32],
revealing the viologen’s potential for anion recognition and
transportation.

In the previous study [26], 1-ethyl-1-benzyl-4,4-bipy-
ridinium dichloride (BEV-Cl

2
) and CB[8] are found to form

inclusion complex. It is assumed that the effective positive
charge character on the bipyridinium fragment could be
affected by the associated counter anions, which could in
turn influence the efficiency of CB encapsulation. In an
effort to gain further understanding on the CB encapsulation,
we have now synthesized a series of 1-ethyl-1-benzyl-4,4-
bipyridinium compounds that bear different counter anions
(BEV-X

2
, Figure 1, where the X is Cl, Br, I, PF

6
, ClO
4
) and

reported their inclusion complex behaviour with CB[8].
During the study, the interaction between BEV-Cl

2
and

CB[8] was used as a reference. For comparison, different
counter anionswere chosen,which included different halides,
as well as PF

6

− and ClO
4

−. To eliminate the possible interfer-
ence from the other ions, double distilledwater was employed
for all the measurement except electrochemistry, where 0.1M
phosphate buffer solutions (pH 7.4) were used instead. The
roles of the different counter anions on the CB[8] host-guest
chemistry were examined by NMR, MS, electrochemistry,
and Na

2
S
2
O
4
-induced redox chemistry.

2. Experimental Section

2.1. Chemicals and Reagents. All the solvents were of analytic
grade, and CB[8] was synthesized according to [33]. The
NMR data were recorded on a Varian Inova-400 spectrom-
eter with chemical shifts reported as ppm, and the solvents
were D

2
O.Mass spectrometric data were obtained on aQ-Tof

mass spectrometer (Micromass, Manchester, UK). Absorp-
tion spectra were measured on a Perkin Elmer Lambda 35
UV-Vis spectrophotometer.

Electrochemical measurements were recorded with a
BAS 100 B/W electrochemical work station; the scan rate is
10mV s−1 for all cyclic voltammetric (CV) and differential
pulse voltammetric (DPV) experiments. All curves were
obtained in a three-electrode cell under N

2
. The working

electrode was a glassy carbon disc (diameter 3mm) that was
successively polished with 3 𝜇m and 1 𝜇m diamond pastes.
The experimental counter electrode was a platinum wire and
the reference electrode was a saturated calomel electrode
(SCE). The experiments were conducted in 0.1M phosphate
buffer solutions (pH 7.4). All solutions were deoxygenated by

purging with N
2
and maintained under an inert atmosphere

during the electrochemical experiments.

2.2. Synthetic Section

2.2.1. Syntheses of BEV-Cl
2
, BEV-Br

2
, and BEV-I

2
. BEV-

(PF
6
)
2
was synthesized according to the literature [24]. And

the anions were exchanged to the corresponding halide
anions by ion exchange experiments. Take BEV-Cl

2
as an

example: BEV-(PF
6
)
2
(0.56 g, 1mmol) was dissolved in 3 mL

anhydrous acetone and dropped into the solution of tetra-
butylammonium chloride (0.6 g, 2mmol). The precipitate
was collected and dried to give BEV-Cl

2
. The corresponding

BEV-Br
2
and BEV-I

2
were obtained by the same procedure.

2.2.2. Syntheses of BEV-(ClO
4
)
2
. BEV-I

2
(0.53 g, 1mmol) was

dissolved in 10 mL deionized water and dropped into an
aqueous solution of AgClO

4
(0.41 g, 2mmol). The precipitate

was washed thoroughly with acetonitrile. Then the solvent
was removed to get the crude product, which was further
purified by recrystallization from acetonitrile.

Not much difference can be observed on 1H NMR
spectra for BEV-X

2
with different counter anions in D

2
O

(see Figure S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2013/452056); take BEV-Cl

2
as an

example: 1H NMR (400MHz, D
2
O) 𝛿 9.14 (dd, J = 14.7,

6.9Hz, 4H), 8.53 (t, J = 5.6Hz, 4H), 7.54 (s, 5H), 5.94 (s, 2H),
4.78–4.73 (m, 2H), and 1.70 (t, J = 7.3Hz, 3H).

2.3. Theoretical Calculation Method. Density functional the-
ory (DFT) calculations were carried out with the Gaussian
09 program package [34], utilizing Becke’s three-parameter
B3LYP exchange correlation functional together with the 3–
21G basis set for C, H, O, andN atoms [35].The geometries of
the singlet ground state (S

0
) were fully optimized. No imagi-

nary frequencies were computed in the frequency analysis of
any of the calculated structures, demonstrating that each is in
a local energy minimum.

3. Results and Discussion

3.1.The Host-Guest Complexes Studies. As shown in Figure 2,
1HNMR spectra of BEV-X

2
(where the X is Br, I) before and

after interaction with CB[8] can be easily followed in D
2
O.

It is no doubt that the assembly happened after addition of
1 equivalent CB[8] into the solution of BEV-X

2
, which is in

accordance with our previous study [26] on BEV-Cl
2
and

CB[8]. Unfortunately, the corresponding 1HNMR spectra of
BEV-(PF

6
)
2
and BEV-(ClO

4
)
2
were not obtained due to the

compounds’ poor solubility in water.
Not much difference can be observed for BEV-X

2
(where

the X is Cl, Br, I) with different counter anions on 1H NMR
spectra with and without the presence of CB[8], suggesting
that the counter anions could be located just outside the
cavity of CB[8], which have little effect on the electronic
environment of the including complexes.

The formation of 1 : 1 inclusion complex was also con-
firmed by mass spectrometry (see Supplementary Figure
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Figure 2: From bottom to up, 1H NMR spectra for BEV-Cl
2
alone, 1 : 1 including complexes of BEV-Cl

2
/CB[8], BEV-Br

2
/CB[8] and BEV-

I
2
/CB[8], respectively, and the schematic representation of the assembly of BEV2+/CB[8].

S2). The MS spectra gave a positively charged peak at m/z
802.5623, which is calculated for (BEV2+ + CB[8])/2. The
same peaks can also be found in the ESI-MS spectra of BEV-
Br
2
and BEV-I

2
with the presence of CB[8], providing strong

evidence for the formation of the corresponding host-guest
complex, demonstrating that the counter anions exhibited
little effect on mass spectrometry of the 1 : 1 including com-
plexes.

3.2. Theoretical Calculation. DFT calculations were carried
out to shed some light on the binding. A continuum solvation
model (PCM) was used for the consideration of solvent

effects in aqueous solution.The optimization result (Figure 3,
BEV-I

2
was taken as an example here; the others can be

found in Supplementary Figure S3) showed that the benzyl
unit and part of viologen unit were inserted into the CB[8]
cavity, while a relatively larger part of viologen was exposed
outside the CB[8] cavity. The benzyl unit was bent towards
the bipyridinium ring inside the CB[8] cavity, leading to the
result that the pyridinium ring was somehow rotated around
the central C

155
–C
158

bond and the two rings were no longer
kept on the same plane.

The I− counter anions, depicted in purple, were shown to
be located outside the CB[8] cavity. The distances between I−
and the nitrogens atom are 5.26 Å and 4.56 Å, respectively,
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Figure 3: Optimized geometry of the inclusion complex BEV-I
2
/CB[8] viewed from top (a) and front (b). To aid visualization, CB[8] is in

stick representation and the viologen salt in ball and stick representation with the iodide atoms in purple.
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Figure 4: The absorption spectra of BEV-X
2
(1 × 10−5M) with the addition of different equivalents of CB[8], (a) BEV-Cl

2
, (b) BEV-Br

2
, (c)

BEV-I
2
, (d) BEV-(PF

6
)
2
, and (e) BEV-(ClO

4
)
2
, respectively.The concentrations of CB[8] added are 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225,

0.25, 0.275, 0.5, 0.525, 0.75, 1.0, 1.25, and 1.5 equivalents, respectively. The arrows indicate how the absorption bands respond to the increases
of the CB[8] concentration.
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Figure 5: The absorption spectra of BEV-X
2
(1 × 10−5M) after reduction with Na

2
S
2
O
4
(8–10 eq) under Ar atmosphere, (a) without CB[8],

and (b) with the presence of 1 equivalent CB[8].

providing further evidence that there is electrostatic interac-
tion between I− andCB[8] host.The distances between I− and
the nearest hydrogen atom are 3 Å and 2.79 Å, suggesting that
some weak hydrogen bonding interaction might exist.

To make a comparison, the key optimized atom distances
of C
146

-N
152

, the angles of A(C
149

-C
151

-N
152

), and the related
dihedral angles for the including complexes in the ground
states are listed in Table 1.

It is obvious that the BEVI
2
guest was distorted more

severely than the others inside the CB[8] cavity, which might
influence the efficiency of CB encapsulation.

3.3.The Electrochemical Behavior. The electrochemical prop-
erties of all the target complexes were studied in a phosphate
buffer solution (0.1M, pH 7.4), with a scan rate of 10mV/s
both in DPV and CV detection (see Supplementary Figure
S4).The concentration of BEV-X

2
was 0.5mM. All of the five

complexes have nearly the same two consecutive one-electron
reduction peaks; the first wave around −0.53V was attributed
to the reduction of EV2+ moiety to the cation radical EV+∙
while the second wave around −0.80V corresponded to the
reduction of EV+∙ to EV0. After addition of 1 equivalent
CB[8], the first peak potential was shifted to about −0.55V
while the second peak shifted to about −1.10 V. The reason
that the second peak shifted so much can be ascribed to
the formation of radical dimer in the cavity of CB[8]. All
these are in good agreement with our previous result [23].
Not too much difference caused by different counter anions
can be observed during the measurements, providing further
evidence that the counter anions did not havemuch influence
on the CB[8] host during electrochemistry.

A control experiment was done on the buffer solution
alone without addition of any complexes (see Supplementary
Figure S5). No peak signals can be observed either in DPV
or CV detections, demonstrating that the counter anions are

entirely responsible for the above mentioned electrochemical
results.

3.4. UV-Vis Studies for the Including System. The interaction
of BEV-X

2
with CB[8]was also studied onUV-Vis in aqueous

solution as shown in Figure 4.
The concentration of BEV-X

2
was 0.01mM. All BEV-X

2

have the same absorption peak at around 260 nm, which
belonged to the absorption of MV2+ [26]. In the case of BEV-
I
2
, another absorption peak centered at 226 nm can be found;

this was attributed to the absorption of I− [36]. With the
addition of CB[8], the absorption intensity at 260 nm was
clearly decreased, suggesting that the assembly process took
place. This is in good agreement with the literature [2, 26].
However, the peak at 226 nm showed less reducing effect in
comparisonwith that of 260 nm, demonstrating that the host-
guest including process had less effect on the absorption of
I−; the same effect can be followed in control experiment on
UV-Vis titration of 10 𝜇MKI with CB[8] (see Supplementary
Figure S6), suggesting that some weak interaction existed
between the counter anion I− and CB[8], which is in good
agreement with the above mentioned results. According to
the literature method [20], the binding constant of BEV-Cl

2

in the presence of CB[8] is 6.29× 105M−1 by sigmoidal fitting,
while those for BEV-Br

2
, BEV-I

2
, BEV-(PF

6
)
2
, and BEV-

(ClO
4
)
2
are 2.37 × 105M−1, 3.37 × 104M−1, 1.92 × 105M−1 and

5.03 × 105M−1, respectively (see Supplementary Figure S7).
The lower binding constant of BEV-I

2
can be ascribed to the

afore mentioned weak interaction between I− and CB[8], and
the more twisted conformation of BEV inside CB[8]; the real
reason is under investigation.

To provide additional information, UV-Vis spectra were
taken after the BEV-X

2
solution was reduced with excess

Na
2
S
2
O
4
. All experiments were completed under an argon

atmosphere and the results are listed in Figure 5.
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Table 1:The key optimized atom distances and angles for the including complexes in the ground states, calculated with DFT at the B3LYP/3-
21G level using Gaussian 09.

BEV-Cl2 BEV-Br2 BEV-I2 BEV-(ClO4)2 BEV-(PF6)2
C146-N152 distance (angstrom) 5.008 5.024 5.003 5.025 5.034
A(C149-C151-N152) (degree) 109.68 110.04 109.55 110.92 111.13
D(N152-C153-C154-C155) (degree) 1.012 0.857 1.165 0.468 0.781
D(C158-C159-C160-N161) (degree) 0.235 0.392 −0.013 0.690 0.88
D(C159-C160-N161-C162) (degree) 2.136 1.893 2.178 2.166 1.883
D(C146-C145-C150-C149) (degree) −0.922 −0.948 −1.054 −0.704 −0.926
D(C150-C149-C151-H172) (degree) 3.272 −2.983 0.603 11.387 9.167

After addition of excess Na
2
S
2
O
4
(8–10 eq) into 10 𝜇M

BEV-X
2
in aqueous solution, the color of the solution turned

to violet from colorless, and characteristic absorption [2,
26] of the viologen radical was observed at 400 nm and
600 nm for all the complexes. All these provided some further
evidence that the counter anions were located outside the
CB[8] cavity, while the different absorptivity that resulted
demonstrated that the counter anions had some effect on the
radical formation process. With the presence of CB[8], the
color of the solution was changed to magenta after addition
of excess Na

2
S
2
O
4
(8–10 equivalent), and the characteristic

absorptions for the radical dimer at 370 nm, 540 nm, and
1000 nm were observed simultaneously, illustrating the for-
mation of the radical dimer in CB[8] cavity; all these are
in good agreement with the literature [2, 26]. These quite
different absorption profiles provide further evidence that
the counter anions were located outside the CB[8] cavity,
influencing the radical dimerization process too.

A control experiment was performed on Na
2
S
2
O
4
(8–

10 eq) solution without addition of any complexes (see Sup-
plementary Figure S8). No signals can be followed in the
corresponding UV-Vis spectral domain, providing further
evidence that these results are caused by the anions present.

4. Conclusions

Viologen derivatives with different counter anions were
successfully synthesized. NMR, MS, electrochemistry, and
UV-Vis were employed to study the assembly of the target
complexes with CB[8]. All results suggested that viologen
region was threaded through the cavity of CB[8] while the
counter anions were located outside the cavity. The counter
anions do have some effect on Na

2
S
2
O
4
-induced viologen

radical and its dimerization process. These data provide new
insights into CB[8] host-guest chemistry.
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