197 research outputs found

    Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast

    Full text link
    A series of large-scale cyclic triaxial tests were conducted on latite basalt aggregates (ballast) to investigate how the frequency faffects the permanent deformation and degradation of railway ballast. During testing the frequency was varied from 5 Hz to 60 Hz to simulate a range of train speeds from about 40 km/h to 400 km/h. Three categories of permanent deformation mechanisms were observed in response to the applied cyclic loads, namely, the inception of plastic shakedown (f60 Hz). The permanent strain of ballast and particle breakage increased with the frequency and number of load cycles. A cyclic strain ratio was introduced to capture the effect of frequency on the permanent axial and volumetric strains, respectively. An empirical equation was formulated to represent this relationship for latite basalt, and a critical train speed was identiïŹed. A good correlation was obtained between particle breakage and volumetric strain under cyclic loading

    Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer

    Get PDF
    In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however, insight into the relaxation mechanism of hot electron-hole pairs in the band nesting region denoted as C-excitons, remains elusive. Using MoS2 monolayers as a model two-dimensional transition metal dichalcogenide system, here we report a slower hot-carrier cooling for C-excitons, in comparison with band-edge excitons. We deduce that this effect arises from the favourable band alignment and transient excited-state Coulomb environment, rather than solely on quantum confinement in two-dimension systems. We identify the screening-sensitive bandgap renormalization for MoS2 monolayer/graphene heterostructures, and confirm the initial hot-carrier extraction for the C-exciton state with an unprecedented efficiency of 80%, accompanied by a twofold reduction in the exciton binding energy

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    A functional variant in promoter region of platelet-derived growth factor-D is probably associated with intracerebral hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Platelet-derived growth factor D (PDGF-D) plays an important role in angiogenesis, vessel remodeling, inflammation and repair in response to injury. We hypothesized that genetic variation in <it>PDGFD </it>gene might alter the susceptibility to stroke.</p> <p>Findings</p> <p>We determined the genotypes of a single nucleotide polymorphism (SNP) (-858A/C, rs3809021) in 1484 patients with stroke (654 cerebral thrombosis, 419 lacunar infarction, 411 intracerebral hemorrhage [ICH]) and 1528 control subjects from an unrelated Chinese Han population and followed the stroke patients up for a median of 4.5 years.</p> <p>The -858AA genotype showed significantly increased risk of ICH (dominant model: odds ratio [OR] 1.29, 95% confidence interval [CI] 1.00-1.68, <it>P </it>= 0.05; additive model: OR 1.24, 95% CI 1.01-1.52, <it>P </it>= 0.04) than wild-type genotype. Further analyses showed that -858AA genotype conferred about 2-fold increase in risk of non-hypertensive ICH (dominant model: OR 2.1, 95%CI 1.34-3.29, <it>P </it>= 0.001; additive model: OR 1.75, 95% CI 1.24-2.46, <it>P </it>= 0.001). After a median follow-up of 4.5 years, -858AA genotype was associated with a reduced risk of ICH recurrence (dominant model: adjusted hazard ratio [HR] 0.09, 95%CI 0.01-0.74, P = 0.025; additive model: HR 0.21, 95% CI 0.04-1.16, <it>P </it>= 0.073) in non-hypertensive patients.</p> <p>Conclusions</p> <p>The -858AA genotype is probably associated with risk for non-hypertensive ICH. Further studies should be conducted to reveal the role of PDGF-D at various stages of ICH development--beneficial, or deleterious.</p

    Adaptive Honeypot Engagement through Reinforcement Learning of Semi-Markov Decision Processes

    Full text link
    A honeynet is a promising active cyber defense mechanism. It reveals the fundamental Indicators of Compromise (IoCs) by luring attackers to conduct adversarial behaviors in a controlled and monitored environment. The active interaction at the honeynet brings a high reward but also introduces high implementation costs and risks of adversarial honeynet exploitation. In this work, we apply infinite-horizon Semi-Markov Decision Process (SMDP) to characterize a stochastic transition and sojourn time of attackers in the honeynet and quantify the reward-risk trade-off. In particular, we design adaptive long-term engagement policies shown to be risk-averse, cost-effective, and time-efficient. Numerical results have demonstrated that our adaptive engagement policies can quickly attract attackers to the target honeypot and engage them for a sufficiently long period to obtain worthy threat information. Meanwhile, the penetration probability is kept at a low level. The results show that the expected utility is robust against attackers of a large range of persistence and intelligence. Finally, we apply reinforcement learning to the SMDP to solve the curse of modeling. Under a prudent choice of the learning rate and exploration policy, we achieve a quick and robust convergence of the optimal policy and value.Comment: The presentation can be found at https://youtu.be/GPKT3uJtXqk. arXiv admin note: text overlap with arXiv:1907.0139

    Crosstalk between Chemokine Receptor CXCR4 and Cannabinoid Receptor CB2 in Modulating Breast Cancer Growth and Invasion

    Get PDF
    Cannabinoids bind to cannabinoid receptors CB(1) and CB(2) and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB(2) may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis.We observed high expression of both CB(2) and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB(2)-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems.This study provides novel insights into the crosstalk between CB(2) and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB(2) receptors could be used for developing innovative therapeutic strategies against breast cancer

    Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    Get PDF
    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation.We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes.Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states

    Discovery of Molecular Mechanisms of Traditional Chinese Medicinal Formula Si-Wu-Tang Using Gene Expression Microarray and Connectivity Map

    Get PDF
    To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM), we used microarrays, bioinformatics and the “Connectivity Map” (CMAP) to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT) which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 ”M estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2) cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upreguated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE)-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms of actions and to identify new health benefits of TCMs

    Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses

    Get PDF
    © 2018 Kanitz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Although it is generally accepted that geography is a major factor shaping human genetic differentiation, it is still disputed how much of this differentiation is a result of a simple process of isolation-by-distance, and if there are factors generating distinct clusters of genetic similarity. We address this question using a geographically explicit simulation framework coupled with an Approximate Bayesian Computation approach. Based on six simple summary statistics only, we estimated the most probable demographic parameters that shaped modern human evolution under an isolation by distance scenario, and found these were the following: an initial population in East Africa spread and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent simulations with these estimates followed by cluster analyses produced results nearly identical to those obtained in real data. Thus, a simple diffusion model from East Africa explains a large portion of the genetic diversity patterns observed in modern humans. We argue that a model of isolation by distance along the continental landmasses might be the relevant null model to use when investigating selective effects in humans and probably many other species

    Health and economic impact of rotavirus vaccination in GAVI-eligible countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rotavirus infection is responsible for about 500,000 deaths annually, and the disease burden is disproportionately borne by children in low-income countries. Recently the World Health Organization (WHO) has released a global recommendation that all countries include infant rotavirus vaccination in their national immunization programs. Our objective was to provide information on the expected health, economic and financial consequences of rotavirus vaccines in the 72 GAVI support-eligible countries.</p> <p>Methods</p> <p>We synthesized population-level data from various sources (primarily from global-level databases) for the 72 countries eligible for the support by the GAVI Alliance (GAVI-eligible countries) in order to estimate the health and economic impact associated with rotavirus vaccination programs. The primary outcome measure was incremental cost (in 2005 international dollars [I])perdisability−adjustedlifeyear(DALY)averted.Wealsoprojectedtheexpectedreductioninrotavirusdiseaseburdenandfinancialresourcesrequiredassociatedwithavarietyofscale−upscenarios.</p><p>Results</p><p>Underthebase−caseassumptions(70]) per disability-adjusted life year (DALY) averted. We also projected the expected reduction in rotavirus disease burden and financial resources required associated with a variety of scale-up scenarios.</p> <p>Results</p> <p>Under the base-case assumptions (70% coverage), vaccinating one single birth cohort would prevent about 55% of rotavirus associated deaths in the 72 GAVI-eligible countries. Assuming I25 per vaccinated child (~5perdose),thenumberofcountrieswiththeincrementalcostperDALYavertedlessthanI5 per dose), the number of countries with the incremental cost per DALY averted less than I200 was 47. Using the WHO's cost-effectiveness threshold based on per capita GDP, the vaccines were considered cost-effective in 68 of the 72 countries (~94%). A 10-year routine rotavirus vaccination would prevent 0.9-2.8 million rotavirus associated deaths among children under age 5 in the poorest parts of the world, depending on vaccine scale-up scenarios. Over the same intervention period, rotavirus vaccination programs would also prevent 4.5-13.3 million estimated cases of hospitalization and 41-107 million cases of outpatient clinic visits in the same population.</p> <p>Conclusions</p> <p>Our findings suggest that rotavirus vaccination would be considered a worthwhile investment for improving general development as well as childhood health level in most low-income countries, with a favorable cost-effectiveness profile even under a vaccine price (1.5−1.5-5.0 per dose) higher than those of traditional childhood vaccines.</p
    • 

    corecore