5,326 research outputs found

    Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity

    Get PDF
    Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed

    Gamma-Ray Burst and Relativistic Shells: The Surface Filling Factor

    Get PDF
    The variability observed in many complex gamma-ray bursts (GRBs) is inconsistent with causally connected variations in a single, symmetric, relativistic shell interacting with the ambient material ("external shocks"). Rather, the symmetry of the shell must be broken on an angular scale much smaller than Gamma^{-1} where Gamma is the bulk Lorentz factor for the shell. The observed variability in the external shock models arises from the number of causally connected regions that (randomly) become active. We define the "surface filling factor" to be the ratio of the area of causally connected regions that become active to the observable area of the shell. From the observed variability in 52 BATSE bursts, we estimate the surface filling factor to be typically 0.005 although some values are near unity. We find that the surface filling factor is about 0.1 Delta T/T in both the constant Gamma phase (which probably produces the GRB) and the deaccelerating phase (which probably produces the x-ray afterglows). Here, \Delta T is a typical time scale of variability and T is the time since the initial signal. We analyze the 2 hr flare seen by ASCA 36 hr after the GRB and conclude that the surface filling factor must be small (0.001) in the x-ray afterglow phase as well. Explanations for low surface filling factor can either require more or less energy (by a factor of about 1000) compared to that expected for a symmetric shell.Comment: 26 pages, 5 embedded figures, Latex, revised version as in press, ApJ, added figure to show the possible expanding shell geometries that can give low filling facto

    Fault signal propagation through the PMSM motor drive systems

    Get PDF
    This paper describes how a mechanical disturbance on the shaft of a variable speed permanent magnet motor (PMSM) is propagated to the supply input side of the drive system, and therefore may be detected by monitoring specific frequency components in the rectifier input current. The propagation of the disturbance from the torque disturbance, to the motor current, then to the dc link current and finally to the rectifier input current is derived as a series of transfer functions so that both the frequency and the amplitude of the disturbance component in the rectifier input current can be predicted for a specific mechanical disturbance. The limitations to detect the mechanical fault by monitoring only the supply currents are also addressed. Simulation and experimental results are presented to demonstrate the accuracy of the quantitative analysis, and the potential for fault detection using the rectifier input currents

    Fault detection for PMSM motor drive systems by monitoring inverter input currents

    Get PDF
    This paper has proposed a fault detecting method for DC supplied permanent magnet synchronize motor (PMSM) drive systems by monitoring the drive DC input current. This method is based on the fault signal propagation from the torque disturbance on the motor shaft to the inverter input currents. The accuracy of this fault signal propagation is verified by the Matlab simulation and experiment tests with the emulated faulty conditions. The feasible of this approach is shown by the experimental test conducted by the Spectra test rig with the real gearbox fault. This detection scheme is also suitable for monitoring other drive components such as the power converter or the motor itself using only one set of current transducers mounted at the DC input side

    Improved Simulation of the Mass Charging for ASTROD I

    Full text link
    The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices I) mission can affect the quality of the science data as a result of spurious Coulomb and Lorentz forces. To estimate the size of the resultant disturbances, credible predictions of charging rates and the charging noise are required. Using the GEANT4 software toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons and alpha particles (3He, 4He) in the space environment. A positive charging rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at solar maximum. Based on this charging rate and factoring in the contribution of minor cosmic-ray components, we calculate the acceleration noise and stiffness associated with charging. We conclude that the acceleration noise arising from Coulomb and Lorentz effects are well below the ASTROD I acceleration noise limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier components due to charging are investigated, it needs to be studied carefully in order to ensure that these do not compromise the quality of science data in the ASTROD I mission.Comment: 20 pages, 14 figures, submitted to International Journal of Modern Physics

    Bacterial response to the soil environment

    Get PDF
    June 1969.Bibliography: page 22.Supported by the Office of Water Resources Research, Department of the Interior

    Collimation and asymmetry of the hot blast wave from the recurrent nova V745 Scorpii

    Get PDF
    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10^7K. X-ray line profiles are more sharply peaked than expected for a spherically-symmetric blast wave, with a full width at zero intensity of approximately 2400 km/s, a full width at half maximum of 1200 +/- 30 km/s and an average net blueshift of 165 +/- 10 km/s. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray emitting material is aligned close to the plane of the sky and most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations and near-infrared line widths indicates the explosion energy was approximately 10^43 erg, and confirms an ejected mass of approximately 10^-7 Msun. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating the white dwarf is gaining mass and is a supernova Type 1a progenitor candidate.Comment: To appear in the Astrophysical Journa
    • 

    corecore