24 research outputs found

    Cryptic diversity found in Didymellaceae from Australian native legumes

    Get PDF
    Ascochyta koolunga (Didymellaceae, Pleosporales) was first described in 2009 (as Phoma koolunga) and identified as the causal agent of Ascochyta blight of Pisum sativum (field pea) in South Australia. Since then A. koolunga has not been reported anywhere else in the world, and its origins and occurrence on other legume (Fabaceae) species remains unknown. Blight and leaf spot diseases of Australian native, pasture and naturalised legumes were studied to investigate a possible native origin of A. koolunga. Ascochyta koolunga was not detected on native, naturalised or pasture legumes that had leaf spot symptoms, in any of the studied regions in southern Australia, and only one isolate was recovered from P. sativum. However, we isolated five novel species in the Didymellaceae from leaf spots of Australian native legumes from commercial field pea regions throughout southern Australia. The novel species were classified on the basis of morphology and phylogenetic analyses of the internal transcribed spacer region and part of the RNA polymerase II subunit B gene region. Three of these species, Nothophoma garlbiwalawarda sp. nov., Nothophoma naiawu sp. nov. and Nothophoma ngayawang sp. nov., were isolated from Senna artemisioides. The other species described here are Epicoccum djirangnandiri sp. nov. from Swainsona galegifolia and Neodidymelliopsis tinkyukuku sp. nov. from Hardenbergia violacea. In addition, we report three new host-pathogen associations in Australia, namely Didymella pinodes on S. artemisioides and Vicia cracca, and D. lethalis on Lathyrus tingitanus. This is also the first report of Didymella prosopidis in Australi

    A conservation genomics workflow to guide practical management actions

    Get PDF
    Owing to decreasing costs and increased efficiency, it is now conceivable that conservation genomic information can be used to improve the effectiveness of recovery programs for many, if not most, threatened plants. We suggest that a simple genomic study be viewed as an initial step in conservation decision-making, as it informs long-term recovery efforts in various ways. We present biodiversity managers and conservation biologists with a simple, standardized workflow for genomic research that can guide efficient collection, analysis and application of genomic information across disparate threatened plants. Using two case studies, ‘Banksia vincentia’ and Daphnandra johnsonii, we demonstrate how a single round of genotyping by sequencing e a one-time cost e produces multiple directly applicable benefits, and how generating genomic information as early as possible can enhance conservation outcomes. We argue for a shift away from asking whether genomic information is needed or justified, and a shift towards consideration of the questions that need to be addressed. Such questions should aimed at cost-effectively guiding multiple practical aspects of a threatened plant’s management plan. The workflow presented here should help relevant stakeholders design a sampling strategy that directly suits their questions and needs

    In Search of New Fusarium Species

    No full text
    Fusarium is a large fungal genus, but scientists who work with it continue to search for new species to help bridge perceived phylogenetic gaps and to assess the biogeography of species origin and distribution.  Potential new sources for species include collections made from plants and soil in native ecosystems and  ubsistence agriculture farms. These ecosystems are less likely to have suffered anthropomorphic changes and  may offer the best hope for identifying previously undescribed species and for obtaining reliable data on species distribution. In addition to new collections, new species also may result from the break-up of a number of  large species complexes that are held together primarily by   orphological similarities. The two approaches  are complementary and should collectively help to increase the number, diversity and quality of the species  known within the genus

    Co-occurring species of Teratosphaeria on Eucalyptus

    No full text
    A common leaf spot disease occurring on Eucalyptus cladocalyx and E. lehmannii in the Western Cape Province of South Africa is known from literature to be caused by the fungus Coniothyrium ovatum, which is a pathogen native to several eucalypts in Australia. Recent collections have shown that Australian material identified as C. ovatum is morphologically and phylogenetically distinct from the South African specimens, and that all these taxa would be better accommodated in the genus Teratosphaeria. South African specimens previously identified as C. ovatum were found to represent two species that co-occur in the same leaves and even spots and are described here as T. juvenalis and T. verrucosa. Furthermore, a fresh collection of T. ovata from E. phoenicea in Australia, is distinguished morphologically and phylogenetically from similar, newly described taxa such as T. veloci on E. miniata, and Readeriella dimorpha, which is also placed in Teratosphaeria. Although these leaf pathogens appear to be of minor economic importance, they are morphologically similar to two serious eucalypt canker pathogens, namely T. gauchensis and T. zuluensis, which predominantly cause stem cankers, but could also be found occurring in leaf spots on their own, or in association with some of the other species treated here. Further research is, therefore, required to develop molecular detection techniques for these taxa to enable researchers to rapidly distinguish the minor pathogens from the more serious quarantine pathogens that co-occur on leaves

    Variation in Type A Trichothecene Production and Trichothecene Biosynthetic Genes in Fusarium goolgardi from Natural Ecosystems of Australia

    No full text
    Fusarium goolgardi, isolated from the grass tree Xanthorrhoea glauca in natural ecosystems of Australia, is closely related to fusaria that produce a subgroup of trichothecene (type A) mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Mass spectrometric analysis revealed that F. goolgardi isolates produce type A trichothecenes, but exhibited one of two chemotypes. Some isolates (50%) produced multiple type A trichothecenes, including 4,15-diacetoxyscirpenol (DAS), neosolaniol (NEO), 8-acetylneosolaniol (Ac-NEO) and T-2 toxin (DAS-NEO-T2 chemotype). Other isolates (50%) produced only DAS (DAS chemotype). In the phylogenies inferred from DNA sequences of genes encoding the RNA polymerase II largest (RPB1) and second largest (RPB2) subunits as well as the trichothecene biosynthetic genes (TRI), F. goolgardi isolates were resolved as a monophyletic clade, distinct from other type A trichothecene-producing species. However, the relationships of F. goolgardi to the other species varied depending on whether phylogenies were inferred from RPB1 and RPB2, the 12-gene TRI cluster, the two-gene TRI1-TRI16 locus, or the single-gene TRI101 locus. Phylogenies based on different TRI loci resolved isolates with different chemotypes into distinct clades, even though only the TRI1-TRI16 locus is responsible for structural variation at C-8. Sequence analysis indicated that TRI1 and TRI16 are functional in F. goolgardi isolates with the DAS-NEO-T2 chemotype, but non-functional in isolates with DAS chemotype due to the presence of premature stop codons caused by a point mutation

    Pathogenic, morphological, and phylogenetic characterization of fusarium solani f. sp. cucurbitae isolates from cucurbits in Almería Province, Spain

    No full text
    Fusarium solani f. sp. cucurbitae (syn. Neocosmosporum cucurbitae) is one of the most devastating soilborne pathogens affecting the production of cucurbits worldwide. Since its first detection in Almería Province in Spain in the spring of 2007, it has become one of the main soilborne pathogens affecting zucchini production. It has also been reported on melon, watermelon, and squash rootstocks in Spain, representing a high risk of dissemination in the area. The objectives of this study were to investigate the incidence and distribution of this disease in southeastern Spain and characterize isolates collected over 5 years. These strains were characterized on the basis of greenhouse aggressiveness assays on a range of cucurbit hosts, morphological characteristics, and elongation factor 1-α and RNA polymerase II second largest subunit phylogenies. All pathogenic isolates were highly aggressive on zucchini plants, causing a high mortality rate a few weeks after inoculation. The rest of the cucurbit hosts showed differential susceptibility to the pathogen, with cucumber being the least susceptible. Plants belonging to other families remained asymptomatic. Morphological characterization revealed the formation of verticilate monophialides and chlamydospores forming long chains, characteristics not described for this forma specialis. Phylogenetic studies of both the individual loci and combined datasets revealed that all pathogenic isolates clustered together with strong monophyletic support, nested within clade 3 in the F. solani species complex10451465147
    corecore