13 research outputs found

    Integrated silicon photonic crystals toward terahertz communications

    Get PDF
    Published online: June 25, 2018The terahertz frequency range locates between 0.1 and 10 THz. This range accommodates atmospheric windows with staggering absolute bandwidth. It holds a potential for point-to-point wireless communications with an aggregate capacity reaching terabit per second in a range up to a kilometer. This unique capability is envisaged for backhauls between base stations and for local area networks. To this end, efficiency and compactness of the transceivers are crucial for successful large-scale adoption. However, stateof- the-art terahertz front ends are based on radio-frequency or photomixing technologies that are inefficient, bulky, or complicated. In principle, as a neighbor of the microwave and optics domains, the terahertz band can leverage technologies from both sides to overcome those challenges. Recently, low-loss integrated circuits based on photonic crystal waveguides are developed for routing terahertz waves. Here, a progress report on core components, including waveguides and diplexers, is presented. Additionally, the interfacing of the platform with electronic sources and detectors on one end, and with antennas for free-space coupling on the other end, is discussed. Currently, the platform can support terahertz communications at a data rate over 10 Gbit s⁻¹. Challenges and opportunities are discussed in the light of future development in this area.Withawat Withayachumnankul, Masayuki Fujita, and Tadao Nagatsum

    Genetic analysis for mucinous ovarian carcinoma with infiltrative and expansile invasion and mucinous borderline tumor: a retrospective analysis

    No full text
    Abstract Background Mucinous carcinoma (MC) is a histological subtype of ovarian cancer that has a worse prognosis at advanced stages than the most prevalent histological subtype, high-grade serous carcinomas. Invasive patterns have been recognized as prognostic factors for MCs. MCs with infiltrative invasion were more aggressive than those with expansile invasion. MC with an expansile pattern exhibited behavior similar to mucinous borderline tumors (MBT). However, genomic analysis of invasive patterns is insufficient. This study aimed to compare genetic information between groups with MC and infiltrative invasion (Group A) and those with MC with expansile invasion or MBT (Group B). Methods Ten cases each of MC with infiltrative invasion, MC with expansile invasion, and MBT between 2005 and 2020 were identified. Deoxyribonucleic acid (DNA) extraction from formalin-fixed paraffin-embedded tissues was performed, and cases with DNA fragmentation or the possibility of DNA fragmentation were excluded. Mutant base candidates and tumor mutation burden (TMB) values (mutations/megabase) were calculated. Results After assessing the quality of purified DNA, seven cases of MC with infiltrative invasion, five cases of MC with expansile invasion, and three cases of MBT were included. More patients in group A experienced recurrence or progression (p < 0.01) and died of disease (p = 0.03). Moreover, the TMB value was statistically higher in group A than in group B (p = 0.049). There were no statistical differences in the incidence of the mutations of KRAS, TP53, and CREBBP. KRAS, TP53, and CREBBP mutations were discovered in 8/15 (53.3%), 6/15 (40.0%), and 5/15 (33.3%) cases, respectively. Conclusions Genetic analysis revealed that Group A had higher TMB than Group B. Therefore, this result might be useful for future treatment
    corecore