5 research outputs found

    Candidate Predisposition Variants in Kaposi Sarcoma as Detected by Whole-Genome Sequencing

    Get PDF
    Familial clustering of classic Kaposi sarcoma (CKS) is rare with, approximately 100 families reported to date. We studied 2 consanguineous families, 1 Iranian and 1 Israeli, with multiple cases of adult CKS and without overt underlying immunodeficiency. We performed genome-wide linkage analysis and whole-genome sequencing to discover the putative genetic cause for predisposition. A 9-kb homozygous intronic deletion in RP11-259O2.1 in the Iranian family and 2 homozygous variants, 1 in SCUBE2 and the other in CDHR5, in the Israeli family were identified as possible candidates. The presented variants provide a robust starting point for validation in independent samples.Peer reviewe

    WNT2 activation through proximal germline deletion predisposes to small intestinal neuroendocrine tumors and intestinal adenocarcinomas

    Get PDF
    Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described.We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas.To assess the genetic susceptibility and understand the novel phenotype, we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization and organoid culture.We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.Peer reviewe

    Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease–Associated Colorectal Cancer

    Get PDF
    doi: 10.1053/j.gastro.2021.04.042Background & Aims Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. Methods Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. Results Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial–mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5′untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. Conclusions Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS: Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS: Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNTinduced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4 alpha binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 50 untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS: Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.Peer reviewe

    Metodeja retrotransposonien tutkimiseen uuden sukupolven sekvensointidatassa

    No full text
    Retrotransposons are genetic elements with the ability to make a copy of themselves and insert the copy into a new location in a genome. Most of the retrotransposons in the human genome are not transposition competent and the remaining copies are prevented from moving by epigenetics. However, some tumors experience abnormal retrotransposon activity resulting in many copies of retrotransposons inserted into new locations. Retrotransposons can be detected from sequenced genome data by bioinformatic tools. One of them is TraFiC, a tool designed to detect somatic retrotransposon insertions from tumor samples. In this Master’s thesis, I test TraFiC with 201 colorectal cancer tumors and one colorectal adenoma and develop tools to further analyze retrotransposon insertions. These tools are TraID, a pipeline to detect transductions, insertions with flanking sequence from source elements, and InSeqR, a pipeline to recreate the inserted sequence from known insertion sites. TraFiC detected 4744 somatic insertions and TraID detected 346 somatic transductions from the tumor samples. 80 % of the detected insertions were identified as true somatic insertions based on visual examination of a subset of the calls. 87 % of insertions detected by TraFiC and 82 % of the insertions detected by TraID had their insertion breakpoints and the sequence flanking them recreated by InSeqR. The detected insertions with their sequence form a reliable and comprehensive call set that can be used to create new knowledge of somatic retrotransposon insertions in colorectal cancer

    Contribution of allelic imbalance to colorectal cancer

    Get PDF
    Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (Al) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible Al targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within Al peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of Al. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between Al target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of Al in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.Peer reviewe
    corecore