632 research outputs found

    H.H.H. (Holy Hypothetical Hairbrush)

    Get PDF

    I am 22 Years Old

    Get PDF

    24

    Get PDF

    Proctolin and an Endogenous Proctolin-Like Peptide Enhance the Contractility of the Limulus Heart

    Get PDF
    Synthetic proctolin increases the force but not the rate of heart contractions of Limulus in a time- and dose-dependent manner. The threshold of this effect is 3 × 10−10M and the ED50 is approximately 10−8M. At concentrations up to 10−7 M, proctolin has no effect on the rhythmic electrical activity of the isolated cardiac ganglion, and it does not change the simple and compound postsynaptic potentials recorded at the cardiac neuromuscular junction. Proctolin acts directly on the cardiac muscle fibres. Electrically stimulated myocardia show a proctolin-induced increase in contraction amplitude with the same concentration dependence as the intact heart. A compound with an apparent molecular weight of 700–800 occurs in the Limulus nervous system, particularly in the cardiac ganglion. This compound resembles proctolin in being heat-stable, resistant to trypsin and chymotrypsin cleavage, and losing activity in a time-dependent manner in response to treatment with leucine aminopeptidase or pronase. This peptide induces spontaneous contractions and a contracture of the cockroach hindgut in a manner similar to proctolin. Moreover, the Limulus inotropic peptide, like proctolin, increases the force of contraction of the Limulus heart without affecting beat frequency. It is concluded that an endogenous, proctolin-like peptide is an inotropic modulator of the Limulus heart, acting directly on the muscle fibres and not affecting cardiac ganglion activity

    Can cluster environment modify the dynamical evolution of spiral galaxies?

    Get PDF
    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows the construction of high-quality rotation curves. Details concerning the acquisition and reduction procedures of the data are given in Amram. We present and discuss our preliminary analysis and compare them with RWF's results

    Golden Years of Australian Radio Astronomy

    Get PDF
    The evolution of Australian radio astronomy from 1945 to 1960 has been studied in detail by numerous historians of science in recent years. This Open Access book is the first to present an overview of this remarkable chapter in Australian science. The book begins in the post-war period, as the Radiophysics Laboratory in Sydney switched from secret wartime research on radar to peacetime applications of this new technology. Next follows the detection of radio waves from space and the ensuing transformation of this fledgling science into the dominant research program at the Radiophysics Lab. Drawing from this history, the book shows how by 1960 the Radiophysics Lab had become the largest and most successful radio astronomy group in the world. The final chapter presents an overview of Australian radio astronomy from 1960 to the present day, as Australia prepares to co-host the multi-national, multi-billion-dollar Square Kilometre Array. Nearly 300 high-quality images complement the text, drawn from a wide range of sources including the extensive collection held by the CSIRO Radio Astronomy Image Archive. The book will be an essential reference for readers interested in the scientific and cultural development of radio astronomy. This book is published open access under a CC BY 4.0 license
    • …
    corecore