111 research outputs found

    Alien Registration- Sullivan, Ella A. (Reed Plantation, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/32792/thumbnail.jp

    Cardio-Facio-Cutaneous Syndrome: Clinical Features, Diagnosis, and Management Guidelines

    Get PDF
    Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies that bears many clinical features in common with the other syndromes in this group, most notably Noonan syndrome and Costello syndrome. CFC is genetically heterogeneous and caused by gene mutations in the Ras/mitogen-activated protein kinase pathway. the major features of CFC include characteristic craniofacial dysmorphology, congenital heart disease, dermatologic abnormalities, growth retardation, and intellectual disability. It is essential that this condition be differentiated from other RASopathies, as a correct diagnosis is important for appropriate medical management and determining recurrence risk. Children and adults with CFC require multidisciplinary care from specialists, and the need for comprehensive management has been apparent to families and health care professionals caring for affected individuals. To address this need, CFC International, a nonprofit family support organization that provides a forum for information, support, and facilitation of research in basic medical and social issues affecting individuals with CFC, organized a consensus conference. Experts in multiple medical specialties provided clinical management guidelines for pediatricians and other care providers. These guidelines will assist in an accurate diagnosis of individuals with CFC, provide best practice recommendations, and facilitate long-term medical care.CFC International, Vestal, New YorkNational Institutes of HealthNational Institutes of Health (NIH)Univ Minnesota, Dept Pediat & Ophthalmol, Div Genet & Metab, Minneapolis, MN 55454 USAUniv Minnesota, Dept Pediat, Div Clin Behav Neuroscience, Minneapolis, MN 55454 USAChildrens Hosp & Clin Minnesota, St Paul, MN USATexas Childrens Hosp, Dept Mol & Human Genet, Houston, TX 77030 USABaylor Coll Med, Houston, TX 77030 USABenioff Childrens Hosp, Madison Clin Pediat Diabet, San Francisco, CA USAUniv Calif San Francisco, San Francisco, CA 94143 USAUniversidade Federal de São Paulo, Med Genet Ctr, São Paulo, BrazilCatholic Univ, A Gemelli Sch Med, Inst Med Genet, Rome, ItalyUniv Kentucky, Dept Pediat, Lexington, KY USAUniv Texas Hlth Sci Ctr San Antonio, Dept Orthoped, San Antonio, TX 78229 USABoston Childrens Hosp, Dept Cardiol, Boston, MA USABoston Childrens Hosp, Div Genet, Boston, MA USAHarvard Univ, Sch Med, Boston, MA USAEmory Univ, Sch Med, Dept Human Genet, Atlanta, GA USAEmory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA 30322 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA USAYoungstown State Univ, Special Educ & Sch Psychol, Dept Counseling, Youngstown, OH 44555 USACFC Int, Vestal, NY USAUniv Calif Davis, UC Davis MIND Inst, Dept Pediat, Div Genom Med, Sacramento, CA 95817 USAUniversidade Federal de São Paulo, Med Genet Ctr, São Paulo, BrazilNational Institutes of Health: R01-AR062165Web of Scienc

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent

    Get PDF

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    corecore