20 research outputs found

    First results from the OSQAR photon regeneration experiment: No light shining through a wall

    Get PDF
    A new method to amplify the photon-axion conversions in magnetic field is proposed using a buffer gas at a specific pressure. As a first result, new bounds for mass and coupling constant for purely laboratory experiments aiming to detect any hypothetical scalars and pseudo-scalars which can couple to photons were obtained at 95% confidence level, excluding the PVLAS result newly disclaimed.Comment: 4 pages, 5 figure

    First Results of the Full-Scale OSQAR Photon Regeneration Experiment

    Full text link
    Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained.Comment: 5 pages, 4 figures, Photon 2011 Conference, Submitted to JO

    A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

    Get PDF
    Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis

    Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse

    Get PDF

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases

    No full text
    Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins – the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades

    Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages

    No full text
    The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods - DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox¼ and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5 %). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R = 0.97 – 0.99)

    Results of the 2nd run of OSQAR Photon Regeneration Experiment

    No full text
    Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained.Recent intensive theoretical and experimental studies shed light on possible new physics beyond the standard model of particle physics, which can be probed with sub-eV energy experiments. In the second run of the OSQAR photon regeneration experiment, which looks for the conversion of photon to axion (or Axion-Like Particle), two spare superconducting dipole magnets of the Large Hadron Collider (LHC) have been used. In this paper we report on first results obtained from a light beam propagating in vacuum within the 9 T field of two LHC dipole magnets. No excess of events above the background was detected and the two-photon couplings of possible new scalar and pseudo-scalar particles could be constrained
    corecore