29 research outputs found

    In vivo Mechanisms of Antibody-Mediated Neurological Disorders:Animal Models and Potential Implications

    Get PDF
    Over the last two decades, the discovery of antibodies directed against neuronal surface antigens (NSA-Abs) in patients with different forms of encephalitis has provided a basis for immunotherapies in previously undefined disorders. Nevertheless, despite the circumstantial clinical evidence of the pathogenic role of these antibodies in classical autoimmune encephalitis, specific criteria need to be applied in order to establish the autoimmune nature of a disease. A growing number of studies have begun to provide proof of the pathogenicity of NSA-Abs and insights into their pathogenic mechanisms through passive transfer or, more rarely, through active immunization animal models. Moreover, the increasing evidence that NSA-Abs in the maternal circulation can reach the fetal brain parenchyma during gestation, causing long-term effects, has led to models of antibody-induced neurodevelopmental disorders. This review summarizes different methodological approaches and the results of the animal models of N-methyl-d-aspartate receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein 2 (CASPR2), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antibody-mediated disorders and discuss the results and the limitations. We also summarize recent experiments that demonstrate that maternal antibodies to NMDAR and CASPR2 can alter development in the offspring with potential lifelong susceptibility to neurological or psychiatric disorders

    In vivo Mechanisms of Antibody-Mediated Neurological Disorders: Animal Models and Potential Implications

    Get PDF
    Over the last two decades, the discovery of antibodies directed against neuronal surface antigens (NSA-Abs) in patients with different forms of encephalitis has provided a basis for immunotherapies in previously undefined disorders. Nevertheless, despite the circumstantial clinical evidence of the pathogenic role of these antibodies in classical autoimmune encephalitis, specific criteria need to be applied in order to establish the autoimmune nature of a disease. A growing number of studies have begun to provide proof of the pathogenicity of NSA-Abs and insights into their pathogenic mechanisms through passive transfer or, more rarely, through active immunization animal models. Moreover, the increasing evidence that NSA-Abs in the maternal circulation can reach the fetal brain parenchyma during gestation, causing long-term effects, has led to models of antibody-induced neurodevelopmental disorders. This review summarizes different methodological approaches and the results of the animal models of N-methyl-d-aspartate receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein 2 (CASPR2), and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antibody-mediated disorders and discuss the results and the limitations. We also summarize recent experiments that demonstrate that maternal antibodies to NMDAR and CASPR2 can alter development in the offspring with potential lifelong susceptibility to neurological or psychiatric disorders

    Neurodevelopmental outcomes in paediatric immune-mediated and autoimmune epileptic encephalopathy

    Get PDF
    Recognition of paediatric autoimmune/immune-mediated encephalitis and epileptic encephalopathy (e.g. NMDAR-Ab encephalitis) has rapidly increased over the last ten years. While we are succeeding in the diagnosis and identification and even early treatment of these encephalitidies, with studies describing >80% are making a “good” recovery, we are now recognising that a “good” medical outcome does not cover the cognitive, social and behavioural sequelae that can occur, particularly in paediatric patients. Basic measures of medical outcome, for example the modified Rankin Scale (MRS) or the Paediatric Cerebral Performance Category (PCPC), offer the advantage of being quick to use, but do not reveal the more complex difficulties that can impact the future of affected children. This article reviews the current literature on neurodevelopmental outcomes in children affected with autoimmune and immune-mediated encephalitis/epileptic encephalopathy and provides guidance on post-onset surveillance aimed at identifying those most likely to experience ongoing long-term difficulties

    Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model

    Get PDF
    Most patients with N-methyl D-aspartate-receptor antibody encephalitis develop seizures but the epileptogenicity of the antibodies has not been investigated in vivo. Wireless electroencephalogram transmitters were implanted into 23 C57BL/6 mice before left lateral ventricle injection of antibody-positive (test) or healthy (control) immunoglobulin G. Mice were challenged 48 h later with a subthreshold dose (40 mg/kg) of the chemo-convulsant pentylenetetrazol and events recorded over 1 h. Seizures were assessed by video observation of each animal and the electroencephalogram by an automated seizure detection programme. No spontaneous seizures were seen with the antibody injections. However, after the pro-convulsant, the test mice (n = 9) had increased numbers of observed convulsive seizures (P = 0.004), a higher total seizure score (P = 0.003), and a higher number of epileptic 'spike' events (P = 0.023) than the control mice (n = 6). At post-mortem, surprisingly, the total number of N-methyl D-aspartate receptors did not differ between test and control mice, but in test mice the levels of immunoglobulin G bound to the left hippocampus were higher (P < 0.0001) and the level of bound immunoglobulin G correlated with the seizure scores (R2 = 0.8, P = 0.04, n = 5). Our findings demonstrate the epileptogenicity of N-methyl D-aspartate receptor antibodies in vivo, and suggest that binding of immunoglobulin G either reduced synaptic localization of N-methyl D-aspartate receptors, or had a direct effect on receptor function, which could be responsible for seizure susceptibility in this acute short-term model

    Acquired neuromyotonia in children with CASPR2 and LGI1 antibodies

    Get PDF
    Acquired neuromyotonia is a form of peripheral nerve hyperexcitability. In adults, pathogenic antibodies that target the extracellular domains of leucine-rich glioma-inactivated protein 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) have been reported. We describe three paediatric patients with acquired neuromyotonia and CASPR2 and LGI1 serum antibodies. They all presented with acute-onset myokymia and pain in the lower limbs; one patient also had muscle weakness. Electromyography was suggestive of peripheral nerve hyperexcitability. Two patients improved without immunotherapy; one treated patient remained immunotherapy-dependent. Although not fatal, acquired paediatric neuromyotonia can be disabling. It is amenable to symptomatic treatment or may undergo spontaneous recovery. More severe cases may require rational immunotherapy. What this paper adds: The symptoms of neuromyotonia may resolve spontaneously or may require sodium channel blockers. Patients with debilitating symptoms who are refractory to symptomatic therapy may require immunotherapy

    NMDA-receptor antibodies alter cortical microcircuit dynamics

    Get PDF
    NMDA-receptor antibodies (NMDAR-Abs) cause an autoimmune encephalitis with a diverse range of EEG abnormalities. NMDAR-Abs are believed to disrupt receptor function, but how blocking this excitatory synaptic receptor can lead to paroxysmal EEG abnormalities-or even seizures-is poorly understood. Here we show that NMDAR-Abs change intrinsic cortical connections and neuronal population dynamics to alter the spectral composition of spontaneous EEG activity and predispose brain dynamics to paroxysmal abnormalities. Based on local field potential recordings in a mouse model, we first validate a dynamic causal model of NMDAR-Ab effects on cortical microcircuitry. Using this model, we then identify the key synaptic parameters that best explain EEG paroxysms in pediatric patients with NMDAR-Ab encephalitis. Finally, we use the mouse model to show that NMDAR-Ab-related changes render microcircuitry critically susceptible to overt EEG paroxysms when these key parameters are changed, even though the same parameter fluctuations are tolerated in the in silico model of the control condition. These findings offer mechanistic insights into circuit-level dysfunction induced by NMDAR-Ab

    Early predictors of epilepsy and subsequent relapse in children with acute disseminated encephalomyelitis

    Get PDF
    OBJECTIVE:: To identify predictors of epilepsy and clinical relapses in children presenting with acute disseminated encephalomyelitis (ADEM). METHODS:: Children presenting with ADEM between 2005 and 2017 and tested clinically for MOG-Ab were identified from three tertiary paediatric neurology centres in the United Kingdom. Patients were followed up for a median of 6 years (range, 1-16 years). RESULTS:: A total of 74 children were studied (38 females; median age at first presentation: 4.5 years (range, 1.4-16 years)). MOG-Ab was positive in 50/74 (67.6%) of cases, and 27 (54%) of MOG-Ab positive children presented with a neurological relapse over time. MOG-Ab was more frequently positive in the relapsing group than in the monophasic group (27/31 vs 23/43; odds ratio 5.9 (95% CI: 1.8-19.7); p = 0.002). 16/74 (22%) children had seizures during the acute presentation with ADEM and 12/74 (16.2%) patients were diagnosed with post-ADEM epilepsy. The diagnosis of post-ADEM epilepsy was more frequently observed in children with relapsing disease than monophasic disease (10/31 vs 2/43; odds ratio 9.8 (95% confidence interval (CI): 2.0-48.7); p = 0.003), in children who had positive intrathecal oligoclonal bands than those with negative bands (4/7 vs 4/30; odds ratio 8.7 (95% CI: 1.4-54.0); p = 0.027) and in children who had positive MOG-Ab than negative MOG-Ab cases (11/12 vs 39/62; odds ratio 6.5 (95% CI:0.8-53.6); p = 0.051). CONCLUSION:: A higher relapse rate and a greater risk of post-ADEM epilepsy in children with MOG-Ab-associated disease may indicate a chronic disease with immune-mediated seizures in these children

    Abolishing spontaneous epileptiform activity in human brain tissue through AMPA receptor inhibition

    Get PDF
    Objective: The amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is increasingly recognized as a therapeutic target in drug-refractory pediatric epilepsy. Perampanel (PER) is a non-competitive AMPAR antagonist, and pre-clinical studies have shown the AMPAR-mediated anticonvulsant effects of decanoic acid (DEC), a major medium-chain fatty acid provided in the medium-chain triglyceride ketogenic diet. Methods: Using brain tissue resected from children with intractable epilepsy, we recorded the effects of PER and DEC in vitro. Results: We found resected pediatric epilepsy tissue exhibits spontaneous epileptic activity in vitro, and showed that DEC and PER inhibit this epileptiform activity in local field potential recordings as well as excitatory synaptic transmission. Interpretation: This study confirms AMPAR antagonists inhibit epileptiform discharges in brain tissue resected in a wide range of pediatric epilepsies

    Endocrinopathies in paediatric-onset neuromyelitis optica spectrum disorder with aquaporin 4 (AQP4) antibody

    Get PDF
    The involvement of the diencephalic regions in neuromyelitis optica spectrum disorder (NMOSD) may lead to endocrinopathies. In this study, we identified the following endocrinopathies in 60% (15/25) of young people with paediatric-onset aquaporin 4-Antibody (AQP4-Ab) NMOSD: morbid obesity ( n = 8), hyperinsulinaemia ( n = 5), hyperandrogenism ( n = 5), amenorrhoea ( n = 5), hyponatraemia ( n = 4), short stature ( n = 3) and central hypothyroidism ( n = 2) irrespective of hypothalamic lesions. Morbid obesity was seen in 88% (7/8) of children of Caribbean origin. As endocrinopathies were prevalent in the majority of paediatric-onset AQP4-Ab NMOSD, endocrine surveillance and in particular early aggressive weight management is required for patients with AQP4-Ab NMOSD

    Neuronal antibodies in pediatric epilepsy:Clinical features and long-term outcomes of a historical cohort not treated with immunotherapy

    Get PDF
    OBJECTIVE: In autoimmune encephalitis the etiologic role of neuronal cell-surface antibodies is clear; patients diagnosed and treated early have better outcomes. Neuronal antibodies have also been described in patients with pediatric epilepsy without encephalitis. The aim was to assess whether antibody presence had any effect on long-term outcomes in these patients.METHODS: Patients (n = 178) were recruited between 1988 and 1992 as part of the prospective Dutch Study of Epilepsy in Childhood; none received immunotherapy. Healthy age-matched bone-marrow donors served as controls (n = 112). All sera were tested for serum N-methyl-d-aspartate receptor (NMDAR), alpha amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, leucine rich glioma inactivated 1, contactin associated protein like 2 (CASPR2), contactin-2, glutamic acid decarboxylase, and voltage gated potassium channel (VGKC)-complex antibodies by standard techniques. No cerebrospinal fluid (CSF) samples were available. Results were correlated with clinical data collected over 15 years.RESULTS: Seventeen patients (9.5%) were positive for VGKC complex (n = 3), NMDAR (n = 7), CASPR2 (n = 4), and contactin-2 (n = 3), compared to three (3/112; 2.6%) healthy controls (VGKC complex [n = 1], NMDAR [n = 2]; p = 0.03; Fisher's exact test). Titers were relatively low (≤1:100 for cell-surface antibodies), but 8 (47%) of the 17 positive samples bound to the surface of live hippocampal neurons consistent with a potential pathogenic antibody. Preexisting cognitive impairment was more frequent in antibody-positive patients (9/17 vs. 33/161; p = 0.01). Fourteen antibody-positive patients were treated with standard antiepileptic drugs (AEDs); three (17%) became intractable but this was not different from the 16 (10%) of 161 antibody-negative patients. In 96 patients with available follow-up samples at 6 and/or 12 months, 6 of 7 positive antibodies had disappeared and, conversely, antibodies had appeared for the first time in a further 7 patients.SIGNIFICANCE: Neuronal antibodies were found at low levels in 9.5% of patients with new-onset pediatric epilepsy but did not necessarily persist over time, and the development of antibodies de novo in later samples suggests they could be due to a secondary response to neuronal damage or inflammation. Moreover, as the response to standard AEDs and the long-term outcome did not differ from those of antibody-negative pediatric patients, these findings suggest that routine neuronal antibody testing is unlikely to be helpful in pediatric epilepsy. However, the higher incidence of preexisting cognitive problems in the antibody-positive group, the CASPR2 and contactin-2 antibodies in 7 of 17 patients, and the binding of 8 of 17 of serum samples to live hippocampal neurons suggest that neuronal antibodies, even if secondary, could contribute to the comorbidities of pediatric epilepsy.</p
    corecore