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Over the last two decades, the discovery of antibodies directed against neuronal

surface antigens (NSA-Abs) in patients with different forms of encephalitis has

provided a basis for immunotherapies in previously undefined disorders. Nevertheless,

despite the circumstantial clinical evidence of the pathogenic role of these

antibodies in classical autoimmune encephalitis, specific criteria need to be applied

in order to establish the autoimmune nature of a disease. A growing number

of studies have begun to provide proof of the pathogenicity of NSA-Abs and

insights into their pathogenic mechanisms through passive transfer or, more rarely,

through active immunization animal models. Moreover, the increasing evidence

that NSA-Abs in the maternal circulation can reach the fetal brain parenchyma

during gestation, causing long-term effects, has led to models of antibody-induced

neurodevelopmental disorders. This review summarizes different methodological

approaches and the results of the animal models of N-methyl-d-aspartate receptor

(NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein

2 (CASPR2), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

(AMPAR) antibody-mediated disorders and discuss the results and the limitations.

We also summarize recent experiments that demonstrate that maternal antibodies to

NMDAR and CASPR2 can alter development in the offspring with potential lifelong

susceptibility to neurological or psychiatric disorders.

Keywords: animal models, neuronal surface antibodies, passive transfer, maternal transfer, active immunization

INTRODUCTION

Over the last two decades, it has become clear that antibodies against neuronal surface antigens,
particularly receptor-gated ion channels of ion-channel-associated proteins, can reach the brain
to cause a group of disorders referred to as antibody-mediated or autoimmune encephalitis (AE)
(1). These are immune disorders of the central nervous system (CNS) characterized by a wide
range of neurological and psychiatric clinical features and associated with antibodies against
different proteins expressed on the neuronal surface, mainly at excitatory, and inhibitory synapses
(Figure 1). Distinct from classical paraneoplastic syndromes that are associated with onconeural
antibodies (3), in AE, the neuronal surface antibodies (NSAbs) are considered to be pathogenic,
and patients respond substantially to immunotherapies that reduce antibody levels (4).
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FIGURE 1 | (A) Schematic representation of central excitatory and inhibitory synapses and main antibody targets. The proteins targeted by antibodies associated with

autoimmune encephalitis are proteins expressed on the neuronal surface, often at both presynaptic and postsynaptic levels on inhibitory (GABAergic) and/or

excitatory (glutamatergic) neurons in the central nervous system (CNS). (B) Schematic representation of CASPR2. CASPR2 localizes at the juxtaparanode of

myelinated axons. CASPR2 binds to contactin-2/TAG-1 via its extracellular domain and links to PDZ-binding proteins and to the cytoskeleton via protein 4.1B,

stabilizing Kv1 channels [adapted with permission from Giannoccaro et al. (2)].

Interestingly, these pathogenic antibodies can be either
predominantly immunoglobulin G1 (IgG1) or IgG4, depending
on the target antigen. In vitro studies have helped to decipher
the mechanisms by which they lead to neuronal dysfunction:
in many cases, divalent antibodies (IgG1 > IgG3, IgG2) cause
internalization of adjacent surface proteins, leading to their loss
from the membrane; complement activation by these antibodies
can be demonstrated in vitro but may not always occur in vivo.
By contrast, in some disorders, IgG4 antibodies predominate and
act principally or exclusively by direct inhibition of the function
of the target antigen [see (5) and Figure 2].

However, an effect of the antibodies in vitro does not
necessarily reflect a pathogenic role in vivo. For instance,
IgG, IgA, and IgM N-methyl-D-aspartate receptor (NMDAR)
antibodies (NMDAR-Abs) have been identified in a small
proportion of healthy humans and mammals (6–9) and
cause internalization of the NMDAR in cultured neurons
(9, 10), similar to the antibodies found in patients with
the IgG NMDAR-Ab encephalitis (NMDARE) (11). This
suggests that other factors are likely required to induce the
clinical syndrome, factors that may be difficult to model in
vitro alone.

Indeed, according to the modified Witebsky criteria (12),
direct and indirect evidence of pathogenicity requires the
reproduction of the disease in a recipient through direct
transfer of the antibodies (passive transfer) or through
active immunization, respectively. Animal models not
only provide evidence of pathogenicity but can also offer
insight into sites of action, pathogenic mechanisms, and
therapeutic approaches.

Accordingly, over the last few years, animal models, usually
in mice, have been established for the most commonly
encountered NSAbs in clinical practice. Below, we describe
the approaches used and the results of these models and
discuss their advantages and limitations. We also summarize
recent experiments that demonstrate that maternal antibodies
to these or other NSAbs can alter development in the
offspring with potential lifelong susceptibility to neurological or
psychiatric diseases.

DIFFERENT MODELS OF
ANTIBODY-MEDIATED DISORDERS

Animal models of autoimmune disorders can be divided into two
main categories: (1) spontaneous models where, comparably to
humans, animals develop an autoimmune disease spontaneously
and (2) induced models where an autoimmune disease is
artificially provoked. Spontaneous forms of AE have been
reported in different species, but they are uncommon (13, 14).
Most of the models of AE have been obtained through induction
by passive or active immunization. Passive immunization is
based on the reproduction of the disease in a healthy recipient
by transfer of serum, purified immunoglobulins, monoclonal
antibodies, or, more rarely, antibody-producing cells isolated
from an affected human or animal donor. Active immunization
is based on the exposure to an antigen, often in association
with adjuvants, to generate an adaptive immune response. The
antigen can be in the form of purified proteins, recombinant or
synthesized peptides (15).
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FIGURE 2 | Main mechanisms by which antibodies act to reduce the function of their targets. Immunoglobulin G1 (IgG1) and IgG3 can cross-link antigenic targets,

leading to internalization, and degradation of the antigen in lysosomes. Also, IgG1 and IgG3 can activate the complement cascade via their Fc domains, which interact

with complement proteins C1 and C1q. The complement cascade culminates in the formation of the membrane attack complex which disrupts the phospholipid

bilayer, resulting in cell damage. Finally, some autoantibodies can directly block receptors by binding to an essential transmitter or regulatory binding site, but

monovalent IgG4 can only act by disrupting the function of the target or the interaction between their target and partner proteins.

Work on myasthenia gravis (MG) provides examples of both
active and passive immunization and has helped to shape our
understanding of antibody-mediated diseases (Table 1). Passive
transfer is the best way to assess the acute effects of human
autoantibody-mediated diseases and has been used extensively to
study patients’ derived antibodies in MG [(16); see a brief review
by Phillips and Vincent (17). By contrast, active immunization
(see (18)] has been particularly useful to investigate more broadly
the immunological factors underlying the disease, though with
the limitations of possible differences between the function of
the human and rodent immune systems and between different
strains of mice. For instance, C57B1/6 mice were very susceptible
to active immunization with acetylcholine receptor (AChR),
whereas AKR/J mice were resistant (19, 20). Moreover, the use
of the target antigen as a whole protein often induces high titers
of antibodies, but if the protein is from a different species, not
all of the antibodies will necessarily cross-react with the mouse
antigen or be directed against the disease-causing epitope(s).
Therefore, active immunization models are not always relevant
to the human pathology but, when successful in producing
an appropriate clinical and physiological phenotype, provide
a long-term model of the disease that is suitable for testing
experimental therapies.

In contrast to conditions such as MG, where the target
antigens of the antibodies are peripheral and thereby easily
accessible from the systemic circulation, the blood–brain barrier
(BBB) limits the access of immune molecules to the brain.
One way to overcome this limitation, in models of CNS

antibody-mediated diseases, is to infuse the antibodies directly
into the cerebrospinal fluid (CSF) within the cerebral ventricle(s)
(intracerebroventricular, icv) or to inject them into the brain
parenchyma. However, in the majority of autoimmune forms of
encephalitis, the antibody levels are higher in the serum than in
the CSF, suggesting that the antibodies could initiate the disease
by diffusion through an incomplete or temporarily disrupted
BBB (32) or at sites of limited BBB protection such as the
choroid plexus. Therefore, another approach is to administer
the antibodies in the periphery, using the intravenous (iv) or
intraperitoneal (ip) route and if necessary to induce artificially
a breach in the BBB to allow the antibodies to reach their targets.
Classically, the latter is obtained by one or two ip injections of
lipopolysaccharide (LPS), which induces a transient disruption
of the BBB, particularly in the frontal cortex, thalamus, pons–
medulla, and cerebellum (33). It is not yet clear whether the icv or
ip route of administration is most appropriate and whether they
could lead to different CNS changes.

Finally, there is a possibility of transfer from a mouse
dam to developing embryos. Although the BBB interfaces are
formed early in development (34), maternal IgG antibodies
can cross into the fetal brain parenchyma during gestation
(32). It is long established that a neonatal form of MG
can result from the transfer of IgG antibodies from an
affected mother to her fetus in utero (27, 35). Human
MG AChR antibodies injected intraperitoneally into pregnant
mice were shown to cross efficiently from the mouse dam
to her fetuses and to cause neuromuscular changes in
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TABLE 1 | Example of antibody-mediated diseases: clinical and experimental evidence for MG.

IN HUMANS:

• Clinical features (weakness and fatigue) can be reversed by plasma exchange and other immunotherapies (21).

• IgG1 and IgG3 antibodies to the AChR are present in the majority of patients (22, 23).

• IgG and complement deposition are found at the neuromuscular junction (24).

• The thymus gland contains germinal centers and produces some of the AChR antibodies (25).

• Thymectomy leads to long-term clinical benefit, reducing the need for immunotherapies (26).

• Mothers can transfer pathogenic antibodies to the fetus or neonate, causing a transient form of MG (27) or rarely a severe neurodevelopmental disorder (arthrogryposis

multiplex congenital) (28).

GENETIC CONDITIONS:

• Genetic conditions caused by mutations in genes encoding AChRs cause similar clinical features but without evidence of autoimmunity.

• Genetic conditions can be modeled in transgenic mice [see (29)].

IN EXPERIMENTAL ANIMALS:

• Injection of patient IgG into mice or other species leads to short-term clinical or electrophysiological evidence of the disease (16).

• Active immunization against purified AChRs leads to a more severe and prolonged model (30).

For a brief review of the history of research into myasthenia gravis, see Vincent (31). MG, myasthenia gravis; IgG, immunoglobulin G; AChR, acetylcholine receptor.

utero (36); this model has since been used to study the
effects of human serum antibodies on brain development (as
described below).

MODELS OF NEURONAL
ANTIBODY-MEDIATED DISORDERS

The clinical and investigative features of the patients with
antibodies to neuronal surface proteins, and the results of the
existing models, are summarized in Table 2.

NMDAR-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
NMDARE, the classical syndrome associated with IgG1
NMDAR-Abs, is the most commonly recognized AE in
clinical practice. It is characterized by psychiatric symptoms,
such as confusion, abnormal behavior, paranoia, and
hallucinations, in addition to memory problems, seizures,
dyskinesia, autonomic instability, catatonia, hypoventilation,
lethargy, and language deficits (56). In vitro, pathogenic
NSAbs bind and cause clustering (57), cross-linking, and
internalization of NMDAR, leading to a loss of functional
receptors on the cell surface (NMDAR hypofunction), which
is reversible on removal of the NMDAR-Abs (11). Moreover,
NMDAR-Abs induce dispersal of GluN2A-NMDAR, through
the blockade of the interaction between the extracellular
domains of GluN1/GluN2 subunits and ephrin-B2 receptors
(EPHB2R) (58).

In a high proportion of younger women, the disease is
caused by the presence in an ovarian teratoma of neuronal
tissue expressing NMDARs and inducing an immune response
(59, 60). In others, particularly young children, the disease can
follow herpes simplex virus encephalitis (HSVE), probably as
a secondary response to the neuronal damage caused by the
virus (61).

Spontaneous or Genetic Disease
NMDAR-Abs have been described in other mammals (9) and are
present at a low percentage (around 1%) in healthy individuals.
In 2014, a retrospective study showed that Knut, the polar bear
of the Berlin Zoological Garden who drowned in 2011 following
seizures, had high levels of NMDAR-Abs in his serum and
CSF, making him the first non-human case of NMDARE and
reaffirming the epileptogenicity of these antibodies in mammals.
Pathological examination showed a patchy distribution of
infiltrating immune cells, with numerous plasma cells around
vessels and within the parenchymal infiltrates, in the absence of
marked neuronal abnormalities (14).

Mutations in GRIN1 [which encodes the GluN1 (NR1)
subunit of NMDAR] have been associated with a phenotype
consisting of severe intellectual disability, seizures, hyperkinetic
and stereotyped movement disorders, and dysmorphic features
(62–64). In mice, selective deletion of GluN1 in CA1 and CA3
pyramidal neurons abolished long-term potentiation (LTP) and
induced memory impairment (65, 66).

Passive Transfer Models
Animal models of NMDARE have been published recently with
results that recapitulate some of the specific features of the human
disease. In rats, stereotactic parenchymal injection of CSF or
purified IgGs from patients with NMDARE produced different
outcomes. Infusion in the CA1 and premotor cortex increased
the levels of extracellular glutamate and, consequently, neuronal
excitability (46). On the other hand, several studies showed that
a single injection of CSF from patients with NMDARE into
the hippocampus produced a reduction of LTP in the CA1,
CA3, and dentate gyrus (47–49). Behaviorally, effects ranging
from impaired Morris water maze memory performance (47)
to a lack of novel object recognition (49) were reported, in the
absence of significant changes in locomotor activity or anxiety-
like behavior (49).

Continuous icv infusions of CSFs pooled from individuals
with NMDARE into mice over 14 days reproduced some of the
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TABLE 2 | Summary of main features of NSAb diseases and the models.

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

NMDAR (IgG1 PREDOMINANTLY)

NMDAR

encephalitis:

psychiatric

syndrome,

seizures,

amnesia,

movement

disorders

catatonia,

autonomic

instability

EEG variable

MRI often normal

CSF cellular,

intrathecal

synthesis

Active C57BL/6 mice (12

months old) WT and

ApoE−/−; single injection

of a mixture of GluN1

extracellular peptides

and/or

chicken ovalbumin +

complete Freund’s

adjuvant

NMDAR1 peptides Hyperactivity only after

MK-801 in APOE−/−

mice 4 weeks after

immunization

No CD3 infiltrates, no

microglia activation

NA (9)

After 24-h incubation

with serum from

proteoliposome-treated

mice, cultured

hippocampal neurons

showed reduced

NMDAR-mediated

currents and a decrease

of >50% in GluN1

immunoreactivity

Active C57BL/6 adult mice;

subcutaneous injection

of NMDARs in

proteoliposomes (or

liposomes or saline)

followed by a booster 2

weeks later

Purified GluN1/GluN2B

NMDA fully assembled

tetrameric receptors

(holoreceptors)

embedded in liposomes

Hyperactivity,

stereotypied, and

anxiety-like behavior 4

weeks after

immunization; overt

seizures (21%), and

hunched back/lethargy

(11%)

Perivascular cuffing;

patchy areas of cell

death; microgliosis;

immune cell infiltrates

in the brain

Reduced

NMDAR-mediated

currents in cultured

hippocampal neurons

incubated with serum of

immunized mice

(37)

Internalization of

NMDARs

Loss of NMDARs

Disruption of

ephrin interaction

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

Pooled CSF Cognitive and

depressive-like

IgG bound, NMDAR

loss

NA (38)

(11)

PT icv, single bolus Purified serum IgG Increased seizure

susceptibility

IgG, no NMDAR loss Seizures after PTZ (39)

PT Male

C57BL/6 mice (age 8

weeks); icv infusion over

18 days

CSF from patients with

NMDARE

Impaired spatial

memory as detected

with the Morris water

maze test

Decreased content of

NMDAR in the

hippocampus; no

neuronal loss or

inflammatory cell

infiltrates; increased

CXCL10 expression in

the brain

NA (40)

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

CSF from patients with

NMDARE with or without

ephrin-B2

Memory deficit and

depressive-like behavior.

EphB2 prevented

antibody effects

Decrease of the density

of cell surface and

synaptic NMDAR and

EphB2

Impairment of long-term

synaptic plasticity

(41)

(Continued)
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TABLE 2 | Continued

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

PT Male C57BL/6 mice

(8–10w old); ICV

infusion over 14 days

CSF or IgGs

purified

from CSF of patients

with NMDARE

Absence of overt

changes in memory

(NOR), anxiety, and

locomotor activity (OF,

RT). However, reduced

preference for novel

object at NOR

No neuronal loss;

astrocytic hypertrophy

but not proliferation

in the hippocampus

Increased frequency of

seizures; reduced

excitability and

membrane resistance of

CA1

pyramidal neurons in

mice hippocampal slices

(42)

Patient-derived rhuMAb,

specifically synaptic

NMDAR clusters in

cultured hippocampal

neurons and

NMDAR-mediated

currents in NMDAR

transfected cells

PT Mice; icv infusion over

14 days

Recombinant human

antibodies from clonally

expanded intrathecal

plasma cells

Memory impairment at

NOR test

Human IgG bound;

NMDAR loss in the

hippocampus

NA (43)

mAb caused

internalization of NMDAR

PT Female Swiss Webster

mice, 6–8 weeks old;

single iv injection + LPS;

4 days’ observation after

3 days’ recovery

mAb from a patient with

NMDARE

increased spontaneous

locomotor activity

NA NA (44)

PT Female BALB/c mice

(8–10 weeks old)

Intranasal inoculation of

HSV-1 + ACV

NA 4/6 mice developed

serum NMDAR-Abs and

showed decreased brain

NMDAR expression

NA (45)

PT Males Wistar rats; single

stereotactic injection in

the hippocampus (CA1)

and premotor cortex

CSF or IgGs purified

from CSF of patients

with NMDARE

Increased

glutamate

NA NA (46)

PT Female Wistar rats (2

months old); single

stereotactic injection in

the hippocampus

(dentate gyrus)

CSF of patients with

NMDARE or commercial

anti-NMDAR1-Ab

Impaired memory at

Morris water maze

NA Reduced LTP in the

dentate gyrus; absence

of increased frequency of

recurrent epileptiform

discharges induced by

gabazine compared with

controls

(47)

PT Female Wistar rats

(60–90 days old); single

stereotactic injection in

the hippocampus (CA3)

CSF of patients with

NMDARE

NA NA Reduced LTP magnitude

at A/C fiber-CA3

synapses compared with

controls; increased

frequency of epileptiform

after potentials following

the fEPSP

(48)

(Continued)
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TABLE 2 | Continued

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

PT Female Wistar rats

(8–10 weeks old); single

stereotactic injection in

the hippocampus (CA1)

CSF of patients with

NMDARE

Absence of overt

alteration at NOR,

locomotor activity, and

anxiety. However,

reduced preference for

NO at NOR

NA Schaffer collateral–CA1

LTP reduced in

hippocampal slices

(49)

CASPR2 IGg4 > IGg1

Peripheral (pain,

neuromyotonia,

autonomic

dysfunction)

EMG evidence of

peripheral nerve

hyperexcitability

Loss of Kv1 expression

on the surface

of cultured DRG neurons

incubated with

CASPR2-IgG

PT Male C57BL/6J mice

(8–10 weeks old);

ip daily injections for

14–18 days

Purified plasmapheresis

IgG

Evidence of lowered

thresholds for

mechanical pain

IgG bound in DRG,

small increase of

microglia in spinal cord

Decreased Kv currents

with increased excitability

of DRG neurons

(50)

Central: limbic

encephalitis,

Morvan’s

syndrome

MRI FLAIR

hippocampal

hyperintensity,

CSF bland, little

intrathecal

synthesis

Some internalization of

CASPR2 but no loss of

surface CASPR2

PT Male C57BL/6J mice

(8–10 weeks old);

ip daily injections for 8

days + 1 ip LPS injection

Purified plasmapheresis

IgG

Modest loss of working

memory, abnormal

behaviors in the

presence of novel

mouse

No loss of CASPR2 but

extensive microglial

activation and astrocyte

activation with

complement expression

NA (51)

CASPR2 internalization

with reduction of

CASPR2 surface

expression and

decreased intensity of

surface GluA1 total and

synaptic clusters

PT C57BL/6J mice; single

stereotactic injection;

primary visual cortex

(V1)

Purified IgG from PLEX NA NA Reduced amplitude of

AMPAR-mediated

mEPSCs in V1-layer 2/3

pyramidal neurons

incubated with patient

IgG

(52)

LGI1 IGg4 > IGg1

Central: LE with

or without FBDS

and or

hyponatremia

MRI FLAIR

hippocampal

hyperintensity,

usually normal

CSF, rare OBs;

Abs can be absent

Antibodies prevent the

binding of LGI1 with

ADAM22 and ADAM23

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

Purified IgG from serum IgG bound; reduced

Kv1.1 and AMPAR

Memory deficit at NOR Increased presynaptic

excitability and

glutamatergic synaptic

transmission and

impaired LTP in acute

hippocampal slices from

LGI1-IgG-injected mice

(53)

AMPAR

Central: LE Lymphocytosis;

OBs; Abs usually

present

Internalization of

AMPARs; depletion of

heteromeric synaptic

AMPARs containing

GluA2 most likely

followed by a synaptic

incorporation of GluA1

homomeric AMPARs;

decreased mEPSC

amplitudes and

frequency in neurons

treated with a-GluA2 IgG

PT C57BL/6 mice (WT and

GluA1-KO); icv infusion

over 14 days or single

stereotactic

intrahippocampal (CA1)

injection

IgG purified from serum Memory impairment at
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neuropsychiatric features observed in patients such as memory
deficits, anhedonia, and depressive-like behaviors. Seizures or
movement disorders were not observed. IgG deposition and
a decrease in NMDAR clusters on hippocampal neurons was
observed in NMDAR-Ab-injected mice, which resolved within
days after discontinuing the infusion (38). Further studies have
also shown disruption of the normal interaction with other
synaptic proteins, in particular EphrinB2R. Administration of
ephrin-B2 (the ligand of the EphrinB2 receptor) in the 14-
day infusion animal model prevented the pathogenic effects
of NMDAR-Abs on memory and behavior, levels of cell-
surface NMDAR, and synaptic plasticity (41). Recently developed
human-derived monoclonal antibodies to the NMDAR have
produced similar pathogenic effects in vivo and in vitro and offer
a promising less-limited resource (compared to human CSF and
IgG) for future experimental studies (43).

In another mouse model, icv injection of purified
plasmapheresis IgG from individuals with NMDARE induced,
in association with a subthreshold dose of the chemo-convulsant
pentylenetetrazol (PTZ), more frequent and severe seizures
than a single injection of IgG from control individuals [(39);
see Figure 3]; cognitive and other features were not examined
in these mice. Continuous wireless electroencephalogram
(EEG) recording did not identify any spontaneous seizure
activity. However, there was IgG bound to the hippocampus
at 48 h post icv infusion, particularly to the CA3 region, and
it correlated with the number and severity of seizures seen
in the mice, but there was no apparent loss of NMDARs
(Figure 3). In a more recent study, EEG recordings of mice
infused intraventricularly for 14 days with CSF NMDAR-Abs
showed a higher frequency of seizures compared with control
mice, associated with variable behavior ranging from sleeping
or normal exploratory activity to freezing and myoclonic
jerks (42). Two main seizure patterns were observed, one,
more frequent, characterized by high-amplitude rhythmic
spikes that occurred at relatively constant rates or at irregular
intervals and another, less common, characterized by high-
amplitude fast rhythmic activity that fluctuated in amplitude
in a spindle-like fashion (42). Continuous EEG recordings may
be necessary to detect reliably spontaneous non-motor seizures
in models of antibody-mediated encephalitis. Neuropathology
showed absence of neuronal death and only mild astrocytic
activation (42).

In another study using continuous icv infusion, mice receiving
patients’ CSF showed memory impairment in the Morris water
maze, but not in the novel object recognition test, and a tendency
to a reduced expression of NMDAR in the mouse brains. No
overt inflammatory changes were observed, but an increase of
the chemokine CXCL10 was detected (40), a finding that has
been observed also in patients with NMDARE (67). Intravenous
infusion of monoclonal NMDAR-Abs followed by LPS increased
mouse voluntary locomotor activity at the mouse wheel-running
test, similarly to that observed in mice treated with low doses of
the NMDAR inhibitor MK-801 (44).

Overall, the passive-transfer animal models support the
proposed mechanisms of cross-linking and internalization as
well as the relevant role of altered NMDAR trafficking in the
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FIGURE 3 | Epileptogenic effects of a single intracerebroventricular (icv) injection of N-methyl-D-aspartate receptor antibody (NMDAR-Ab)-positive immunoglobulin G

(IgG). (A) The seizure score of mice injected with NMDAR-Ab IgG was higher than that of those injected with control IgG following exposure to a subthreshold dose of

PTZ. (B) Diagram showing placement of subcutaneous wireless electroencephalogram (EEG) transmitter that allows continuous EEG recording in injected mice with

no need for tethering (Open Source, Hashemi Instruments, USA). (C) A representative EEG of an NMDAR-Ab-injected mouse post-PTZ shows a number of “spikes”

corresponding to convulsive seizures (upper trace), compared with the EEG of a healthy control IgG-injected mouse, which has minimal spike activity (lower trace).

(D) When analyzed using the computer-based event detection program and blinded observer verification, the number of spikes seen in the hour following PTZ

injection was greater in the NMDAR-Ab (n = 7) compared with the healthy control IgG (n = 6) injected mice (P = 0.023, Mann–Whitney). Results are mean ± SEM.

(E) Human IgG injected in vivo was detected postmortem in NMDAR-Ab IgG-injected mice with antihuman IgG (green) merged with the nuclear stain

4
′

,6-diamidino-2-phenylindole (DAPI) (blue). The typical pattern of NMDAR-Ab in the molecular cell layer with sparing of the granule cell layer was found (left image).

Control IgG-injected mice had no detectable IgG (right image). (F) Bound human IgG in the hippocampi, as determined by the mean fluorescence intensity analysis of

brain sections, was higher in the NMDAR-Ab IgG-injected mice than in healthy control IgG-injected mice in the CA1, CA3, and dentate gyrus (DG). (G) For the

NMDAR-Ab animals (n = 5), there was a linear correlation between IgG binding and seizure score (R2 = 0.8; P = 0.04). The contents of this figure are taken from

Wright et al. (39) with permission from Oxford University Press.

pathogenesis. However, these models have not demonstrated
all the clinical features; for example, none have reproduced
the (often-striking) movement disorders or shown long-
term cognitive deficits and structural hippocampal damage
as seen in some patients (68). A possibility is that some
inflammatory changes are not reproduced by passive transfer.
The discrepancies observed between different models might also
relate to different protocols, to the use of different species and
strains, and to different effects of the antibodies in relation to
acute or chronic exposure.

Active Immunization
In a recent mice active immunization model, Pan et al. (9)
showed that mice immunized against NMDAR1 peptides did
not show behavioral changes at the open-field test. Even in
the presence of high titers of NMDAR-Ab, an increase of
locomotor activity, a psychosis-like behavior, was obtained only
upon MK-801 challenge in ApoE−/− mice, which present a
disrupted BBB. No lymphocyte (CD3) infiltrates nor microglial

activation was detected on immunopathology. On the contrary,
immunization with purified GluN1/GluN2B fully assembled
tetrameric NMDARs (holoreceptors) embedded in liposomes
induced a phenotype characterized by hyperactivity, stereotyped
motor features (tight curling), and seizures in association
with neuroinflammation and immune cell infiltrates (37).
Distinct from the passive-transfer models, these immunized mice
produced GluN1 and GluN2 antibodies that reacted with the
linear epitopes of the NMDAR protein, and not the amino-
terminal domain of GluN1 as seen in the human-derived
antibodies (69). Nevertheless, this model may prove useful for
testing novel treatments acting on the cellular inflammatory
component of the disease.

Finally, a recent small study investigated the mechanisms
involved in the pathogenesis of post-HSV-1 NMDARE (45).
Following intranasal inoculation of HSV-1, 67% (four out
of six) of mice developed serum NMDAR-Abs. The same
mice showed reduced hippocampal NMDAR compared with
mice without antibodies, inferring IgG-mediated loss, but the
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authors did not demonstrate IgG antibodies bound to the
hippocampus. This model could be a useful platform to
further explore the mechanisms of post-HSV encephalitis with
secondary NMDARE.

CASPR2-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
CASPR2 is a neurexin-related cell adhesion molecule expressed
in the CNS and peripheral nervous system, and CASPR2
antibodies (CASPR2-Abs) react with both the brain and
peripheral nerve tissues [(70); see Figure 1]. This expression
pattern well-explains why CASPR2-Abs have been associated
not only with peripheral nerve hyperexcitability (often called
neuromyotonia) but also with CNS symptoms including
cognitive impairment, memory loss, hallucinations, delusions,
cerebellar symptoms, and epilepsy. Some patients present with
Morvan syndrome (MoS), characterized by the combination
of neuromyotonia, neuropathic pain, encephalopathy with
hallucinations, and a sleep disorder, described as agrypnia
excitata (71, 72); the latter is characterized by severe insomnia,
dream-like stupor (hallucinations and enacted dreams),
sympathetic hyperactivity (hyperthermia, perspiration,
tachypnea, tachycardia, and hypertension), and motor agitation.
CASPR2-Abs are mainly IgG4, but most patients have IgG1
antibodies as well.

CASPR2 is essential for clustering Kv1.1 and Kv1.2 channels
at the juxtaparanodes of myelinated axons, where the channels
are important for repolarization of the nerve axon, avoiding
repetitive firing and helping to maintain the internodal resting
potential. Their functions at CNS synapses are not well-defined.

The in vitro effects of CASPR2-Abs are complex. In one study,
the antibodies inhibited CASPR2 interaction with contactin-2
but did not lead to CASPR2 internalization (73). However, in
two others, in vitro exposure induced CASPR2 internalization in
vitro (51, 52) with variable effects on CASPR2 expression, ranging
from absent (51) to significant (52) loss of surface expression.

Spontaneous or Genetic Disorders
Interestingly, mutations in the CNTNAP2 gene, encoding
CASPR2, are associated with focal epilepsy, schizophrenia, and
autism spectrum disorder (ASD) (74). CNTNAP2-knockout
(KO) mice were shown to have social deficits, abnormal motor
activity, cognitive deficits, and seizures (75).

Passive Transfer Models
Intraperitoneal injection of purified IgG from two CASPR2-Ab-
positive patients to mice over 14–18 days, without attempt to
breach the BBB, reduced the thresholds for mechanical stimuli,
a signature of pain (50). The effects induced by the antibodies on
pain sensitivity were also observed in KO mice lacking CASPR2
(CNTNAP2−/−). These mice demonstrated enhanced pain-
related hypersensitivity to noxious mechanical stimuli, although
more severe than that obtained with the antibodies, and also
to heat and algogens. Nevertheless, either immune or genetic-
mediated ablation of CASPR2 enhanced the excitability of dorsal
root ganglia (DRG) neurons through regulation of Kv1 channel

expression at the soma membrane (50). CASPR2-IgG did not
cause neuronal loss nor overt inflammation, although a modest
increase in microglial cell count was observed in the spinal
cord (50).

To explore the effects of CASPR2-Ab in the CNS, a similar
protocol was used with eight daily injections of IgG purified from
one patient with AE and from one healthy control (Figure 4).
A single dose of LPS was added at day 3 to disrupt the BBB
(51). Mice injected with CASPR2-IgG showed less alternation
in the continuous spontaneous alternation tests, suggestive
of memory impairment, and longer latency to interact and
increased immobility during the social interaction test (Figure 4).
These changes had not been seen during isolated open-field or
other tests, suggesting that the effects could be indicative of
anxiety in the context of a novel mouse, rather than an effect
on normal exploratory activity. At neuropathology, CASPR2-IgG
injected mice showed human IgG deposition, particularly in the
cortex, hippocampus, and thalamus; mild loss of Purkinje cells
and c-Fos activation as well as microglial and astrocyte activation
without B- or T-cell infiltration (Figure 4). Microglial activation
has been reported in neuropathological cases of patients with
CASPR2-Ab encephalitis (76, 77).

Although this model showed evidence of pathogenicity
of CASPR2-IgG, it failed to recapitulate the wide range of
defects found in the patients (e.g., autonomic, sleep disturbance,
and hormonal/neuropeptide abnormalities) who would require
substantial additional tests. Moreover, it does not explain how
CASPR2-Abs cause their effects. Indeed, IgG deposition was
not associated with a reduction of CASPR2 expression on
immunohistology. On the contrary, a trend toward higher levels
of mouse CASPR2 was seen in the brain extracts of CASPR2-IgG-
injected mice, suggesting some compensatory upregulation.

Injection of a mixture of CASPR2-Abs in mouse visual cortex
produced impaired localization of mouse Caspr2 to excitatory
synapses and significantly decreased AMPAR-mediated currents
in layer 2/3 pyramidal neurons; this implied a dysfunction of
glutamatergic transmission in the pathogenesis of CASPR2-Ab
encephalitis (52). Future studies should evaluate in parallel the
effects of CASPR2-Abs on its partner protein network and on
neuronal activity.

LGI1-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
Autoantibodies to LGI1 (LGI1-Abs) are the most common
autoantibody in patients with limbic encephalitis (LE), a clinical
syndrome characterized by the acute development of mood
changes, anxiety, short-term memory deficit, and seizures due
to an inflammatory process involving the limbic system that
includes the medial temporal lobes, hippocampus, amygdala, and
frontobasal and cingulate cortices (1). In patients with LGI1-
Abs, the onset of an overt limbic dysfunction can be preceded by
episodes of faciobrachial or crural seizures that last a few seconds
and occur many times during the day; these episodes have been
described as faciobrachial dystonic seizures (FBDS) (78).

LGI1 is a protein secreted by the presynaptic terminals of
neurons that bind to ADAM22 and ADAM23, two proteins
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FIGURE 4 | Intraperitoneal (ip) injection of CASPR2 immunoglobulin G (IgG) with lipopolysaccharide (LPS) causes behavioral and neuropathological changes in mice.

(A) Experimental design and selected behavioral tests. The behavioral tasks assessed locomotion (open field, OF), strength (inverted screen, IS), coordination

(accelerating rotarod, AR; and narrow beam, NB), working memory (continuous spontaneous alternation, CSA), short- (forced alternation, FA) and long-term memory

(novel object recognition, NOR—NORf, familiarization phase; NORt, test phase), anxiety (light-dark box, LDb), compulsive-like behavior (marble burying test, MB),

social behavior (reciprocal social interaction tests, RSI), and olfaction (olfaction test, OT). (B) Continuous spontaneous alternations were reduced in

CASPR2-IgG-injected mice compared with HC-IgG-injected mice (P = 0.044). In the RSI test, there was reduced latency to interact (P = 0.04; Mann–Whitney test)

but no differences in the interaction time or number of interactions. However, in the non-social aspects of the test, there was increased time spent immobile (U =

0.008), reduced rearing (U = 0.02), and reduced grooming (U = 0.018). (C) Bound human IgG in the hippocampi and cerebellum of CASPR2- and HC-IgG-injected

mice. CASPR2-IgG-injected animals had higher levels of IgG in the cortex (Cx) (P = 0.03), hippocampus (Hip) (P = 0.023), and thalamus (Th) (P = 0.0004) compared

with HC-IgG-injected mice. No differences were observed in the levels of CASPR2 expression in the same areas (n = 4 per group). (D) c-Fos expression in the

entorhinal–piriform cortex (P = 0.020), dorsomedial hypothalamus (DMH) (P = 0.037), and lateral hypothalamus (LH) (P = 0.031) was higher in the

CASPR2-IgG-injected mice than in the HC-IgG-injected mice (n = 4 per group). (E) Representative images of glial fibrillary acidic protein (GFAP) staining in the

molecular layer of the cerebellum and quantification of the mean fluorescence intensity in the same area showing higher GFAP expression in the CASPR2-IgG-injected

mice (P = 0.043) (n = 4 per group; 40X, 10µm). On the right, representative images of complement C3 expression on GFAP-positive cells. Percentage of C3/GFAP

area ratio per cell showed increased C3 expression of astrocytes in CASPR2-IgG-injected mice. (F) Representative images of the z-stack projected IBA1 staining

used for morphological analysis (40X, 10µm). Quantification of morphological data in the hippocampus and molecular layer of the cerebellum showed that microglia

from CASPR2-IgG-injected mice had a higher cell soma/cell total body size ratio [t(6) = 4.74, P = 0.0032] and shorter [t(6) = 3.68] ramifications than HC-IgG-injected

mice, compatible with an activated phenotype in both the hippocampus (P = 0.017 and P = 0.010, respectively) and the cerebellum (P = 0.0003 and P = 0.008,

respectively). ***The contents of this figure are taken from Giannoccaro et al. (51) with permission from Oxford University Press. * < 0.05, ** ≤ 0.01, *** ≤ 0.001.

involved in cell–cell adhesion and located presynaptically and
postsynaptically, respectively (Figure 1). Binding to ADAM22,
LGI1 regulates AMPAR-mediated synaptic currents in the
hippocampus (79). Binding to ADAM23, LGI1 selectively
prevents inactivation of the presynaptic voltage-gated potassium
channel Kv1.1 (80) mediated by a cytoplasmic regulatory protein,
Kvβ (81).

In cultured hippocampal neurons, LGI1-Abs disrupt the
ligand–receptor interaction of LGI1 with ADAM22, resulting in
reversible reduction in synaptic AMPARs [(82); see Figure 1];

these antibodies could be IgG4. However, in the few postmortem

studies on patients who have died unexpectedly, there appears
to be IgG deposition, some complement deposition, and loss of
neurons. These findings would be compatible with the presence

of IgG1 antibodies; although they are in the minority compared
with IgG4, they tend to be much higher in patients with cognitive
impairment (70, 83). IgG1-induced neuronal loss would explain
why, despite a good response to immunotherapy, many patients
are left with hippocampal atrophy (84), and only 35% of patients
return to their baseline cognitive function (85).

Spontaneous or Genetic Disorders
LGI1 mutations have been associated with an autosomal
dominant lateral temporal lobe epilepsy (ADLTLE) manifesting
with focal seizures often with auditory features (86). The
majority of mutations prevent LGI1 secretion, whereas others
alter its interactions with ADAM22/ADAM23 (87). Animal
models of LGI1 depletion all present spontaneous seizures
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(88–92), although the mechanisms behind this increased
epileptic susceptibility have not been fully elucidated and both
enhanced excitatory transmission (90, 91, 93) and reduced
AMPAR function (79, 80, 89) have been reported.

Intriguingly, a spontaneous model of LGI1-Ab encephalitis
has been observed in cats with feline complex partial seizures
with orofacial involvement (FEPSO) (13, 94–96). Clinically, they
presented with acute onset of complex partial seizures with
orofacial involvement (salivation, facial twitching, lip smacking,
chewing, licking, or swallowing), motor arrest (motionless
starring), and behavioral changes associated with bilateral
hyperintensities at brain MRI (13, 94, 95). Postmortem analysis
of three cases showed IgG and complement deposition associated
with neuronal loss, consistent with the findings in the few
available postmortem examinations from patients with LGI1-
related encephalitis (3, 95). Subsequent neuropathological studies
in cats showed also that, whereas T-cell infiltrates were present
brainwide, BBB leakage was more restricted to limbic areas (96).
This observation suggests that a local BBB vulnerability might be
responsible for the selective involvement of the limbic system,
even though LGI1 is expressed throughout the brain.

Passive Transfer Model
More recently, the pathogenicity of LGI1-Abs has been
confirmed by a passive transfer mouse model based on
cerebroventricular transfer of patient- or control-derived IgG
(53). LGI1-Ab-injected mice showed memory impairment
which slowly reversed after stopping the infusion. However,
in contrast to the spontaneous feline model and LGI1-KO
animals, no epileptic seizures were observed. Nevertheless, LGI1-
Ab caused a significant decrease of the density of total and
synaptic Kv1.1 and AMPAR clusters due to the disruption of
LGI1 interactions with presynaptic ADAM23 and postsynaptic
ADAM22. Consistent with decreased Kv1.1 expression and
previous in vitro studies (97), increased presynaptic excitability
and glutamatergic transmission were observed in acute brain
slice preparations, resulting in increased evoked excitatory
postsynaptic currents (eEPSCs) and reduced failure rate of
synaptic transmission after minimal-stimulation excitatory
postsynaptic currents (msEPSCs). Exposure to LGI1-Ab was also
associated with impaired LTP, which was however independent
of Kv1.1 blockade and possibly related to reduced availability of
AMPAR during LTP. However, these changes were not sufficient
to cause seizures in this model. It is likely that the changes
induced by the antibodies are not as severe as those induced by
geneticmutation or ablation of the LGI1 gene. On the other hand,
complement activation and neuronal loss may play a major role
in the human and feline diseases and mouse serum has a low
intrinsic complement activity (98). Further studies are needed to
investigate this aspect and its relevance to the clinical phenotype.

AMPAR-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
AMPAR antibodies (AMPAR-Abs) are usually associated
with a typical LE, sometimes associated with extra limbic

manifestations, although they can rarely present with rapidly
progressive dementia or psychosis (99, 100).

AMPAR is a heterotetrameric ionotropic glutamate receptor
thatmediatesmost of the fast-excitatory transmission in the brain
(101). AMPAR-Abs can be directed against the GluA1 or GluA2
subunits or both (100). Incubation of cultured rodent neurons
with patients’ IgG to GluA2 led to a decrease of synaptic AMPAR
clusters, resulting in reduced frequency and peak amplitude
of AMPAR-mediated miniature excitatory postsynaptic currents
(mEPSCs) (100, 102).

Spontaneous or Genetic Disorders
Mutations in the GluA1 or GluA2 subunits have been
associated with neurodevelopmental disorders (NDs)
including intellectual disability and autism (103, 104).
GluA1-KO mice present impaired hippocampal synaptic
plasticity (105, 106) and working memory (107–109),
whereas GluA2-KO mice are hypomorphs with poor
motor coordination and low explorative activity (110, 111).
Conditional ablation of GluA1 or GluA2 in mice causes
memory deficits and remodeling of AMPAR subunit
distribution (112–115).

Passive Transfer Models
In accordance with these findings, in vitro studies and in vivo
hippocampal injection of human antibodies against the GluA2
subunit in mice was associated with synaptic downregulation of
GluA2 and increased single-channel conductance in recordings
of the GluA2 IgG-injected mouse, suggestive of GluA2
endocytosis and compensatory synaptic incorporation of GluA1-
containing AMPARs, which have higher channel permeability
(54), as observed in conditional KO models (113–115).
Consistently, this compensatory increase in single-channel
conductance was abrogated in KO mice deficient for GluA1
stereotactically injected with GluA2 antibodies (GluA2-Abs).
Despite these compensatory mechanisms, injection of GluA2-
Abs was associated with impaired LTP in the region of GluA2-
IgG deposition. Both continuous icv infusion of GluA2-Abs
over a 2-week period and stereotactic bilateral injections of
patient IgG directly into the DG, CA1 and CA3 regions
of the hippocampus, were associated with impaired memory
and increased anxiety-like behavior in mice (54). Despite
the observed AMPAR subunit rearrangement, mice did not
show seizures. Therefore, future studies have to evaluate
if these changes are associated with neuronal hyperactivity
and how they are related to seizures in patients. Moreover,
the pathogenicity and mechanisms associated with antibodies
directed against the GluA1 subunit of AMPAR remain to
be established.

ANIMAL MODELS OF NDS INDUCED BY IN

UTERO EXPOSURE TO NSABS

There has been growing interest in the possibility that maternal
antibodies to neuronal antigens could cause neurodevelopmental
diseases, presenting neonatally or later in life. This sprung
initially from studies in mothers with MG whose babies
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developed arthrogryposis. The maternal antibodies were found
to inhibit the function of the fetal AChR and, when crossing
the placenta in the second trimester, paralyzed the babies in
utero; consecutive pregnancies were affected (28, 116). A mouse
model of maternal antibody transfer to the mouse fetus was
developed to show that the maternal serum antibodies were
pathogenic (36), and the model was then used to study a
mother who had two consecutive children with NDs (one
healthy, one with autism, and one with language disorder).
The serum contained antibodies that bound to fetal cerebellar
neurons in rat tissue sections and impaired motor behavior in
the adult mouse offspring of injected dams (117). Since then,
many studies looking for maternal antibodies in autism and
testing their effects in mouse or non-human primates have been
performed [see (118)], but until recently, none had defined a
specific neuronal antigen that was likely to be the target of
fetopathogenic antibodies.

As mentioned above, mutations in the gene encoding
CASPR2 are not common but can be associated with a
variety of neurological and psychiatric disorders, ranging from
ASD or mental retardation and epilepsy to learning disability,
schizophrenia, and Tourette syndrome (119). Mutations in the
GluN genes that encode the N-methyl-D-aspartate (NMDA)
subunits are found in children with a variety of NDs
and epileptic syndromes (120). Both these proteins could
be targets for antibodies that, during development, altered
neurodevelopment. Table 3 summarizes the most recent work in
this field.

EVIDENCE FOR ANTIBODIES TO NSABS IN
PREGNANCY

CASPR2-Abs
Only one study to our knowledge has looked for antibodies
to these proteins in gestational samples from women whose
children have subsequently been diagnosed with specific or
non-specific neurodevelopmental conditions, comparing with
mothers with no such history in their children. Coutinho et al.
(121) measured a range of neuronal antibodies in Danish cohorts
of early or mid-gestational sera. LGI1-Abs, AMPAR-Abs, and
GABAB receptor antibodies were not found. NMDAR-Abs were
not uncommon (overall 5.8%) and more common in mothers
who developed psychosis at some time after the pregnancy.
By contrast, CASPR2-Abs were present (4.9%) in mothers of
children with a diagnosis of mental retardation or other disorders
of psychological development in their children compared with
only 0.9% of coded age-matched mothers with no such history.
This supported the possibility that CASPR2-Abs could be a
cause or contributor to neurodevelopmental diseases in the
offspring. Surprisingly, CASPR2-Abs were low in mothers of
autistic children and not different from the appropriate controls.

A maternal-to-fetal transfer of disease was performed in mice.
The offspring of CASPR2-injected dams were normal postnatally
but as adults showed changes in social interaction tests, and after
termination, there was clear evidence of microglial activation
and reduced glutamatergic synapses, suggesting that microglia

activated by CASPR2-Abs induced changes that resulted in
persistent synaptic loss (122).

A similar model was undertaken using a monoclonal
CASPR2-Ab cloned from a mother of an autistic child (123). In
this study, malemice exposed in utero to CASPR2-Abs showed an
ASD-like phenotype, abnormal cortical development, and altered
hippocampal neurons. Postnatal samples from selected mothers
of autistic children were more often positive for CASPR2-Abs
than from mothers of children with typical development or
women of childbearing age. These sera were not gestational
and in many cases obtained from mothers years after the
affected birth.

NMDAR-Abs
In Coutinho et al. (121), NMDAR-Abs were relatively frequent
(5.8%) during pregnancy. Although NMDAR-Abs were more
frequent in mothers with NDs in their children (ND mothers)
than coded age- and gestation-matched mothers with no such
histories (HC mothers), this difference was not significant
(7.7 vs. 4.6%). Indeed, among the few reported cases of
NMDARE during pregnancy, the majority of newborns were
healthy, except for three cases with neurological sequelae,
including neurodevelopmental delay, movement disorders, and
seizures, and three cases of miscarriages and abortion (125–
127). Whether these complications are due to the antibodies or
to the mothers’ condition severity and related pharmacological
treatments during gestation is not yet clear.

Jurek et al. (124) showed a marginal increase in NMDAR-
Ab titers in postnatal sera from mothers of a mixed population
of neuropsychiatric disorders in a recent study, compared
with mothers of unaffected children. These authors preformed
a similar model of in utero exposure to human NMDAR-
Abs, but in this case using recombinant human monoclonal
NR1-reactive IgG antibodies (124). The placentally transferred
antibodies bound to synaptic structures in the fetal brain,
and the pups demonstrated increased mortality and transiently
reduced NMDAR brain density with impaired excitatory
neurotransmission. The animals displayed hyperactivity, lower
anxiety, and impaired sensorimotor gaiting during adolescence
and adulthood. In aged mice (10 months), the volumes of the
cerebellum, midbrain, and brain stem were all reduced (124).
This study suggests that prenatal exposure to NMDAR-Abs may
result in children’s lifelong neurodevelopmental changes that are
potentially treatable and preventable, if identified in the mothers
during pregnancy, although there is no evidence of that so far.
Such changes might predispose to specific NDs such as autism
or schizophrenia.

DISCUSSION AND CONCLUSIONS

Animal models have helped to elucidate pathogenic mechanisms
of several NSAbs. However, they often fail to recapitulate the
entire phenotypic spectrum associated with human diseases. In
particular, nomovement disorders have been found in themodels
of NMDARE, and no seizures were detected in mice injected
with LGI1-Abs. This could be related to several factors. Firstly,
the choice of the species and strains is relevant. Nowadays, mice
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TABLE 3 | Neurodevelopmental antigens and models.

Protein Presence of antibodies in mothers of

children

Antibodies injected and effects of

antibodies on offspring of

maternal-to-fetal transfer model:

behavior

Effects of antibodies on offspring

of maternal-to-fetal transfer

model: neuropathology

References

Acetylcholine

receptor

Rare mothers with antibodies that inhibit

fetal AChR, paralyze baby in utero, and

cause multiple fixed joints, with paralysis

and death ex utero

Maternal plasma antibodies injected

into dams during E13–18 of

pregnancy. Proportion of offspring

who died at birth or shortly after

probably due to lack of respiration

Antibodies present in mouse

offspring, offspring showed fixed

joints mirroring changes in human

babies

(36)

CASPR2 4.9% of mothers with children diagnosed

with range of motor and psychological

disorders, not autism. HC 0.9%

IgG purified from plasmapheresis

samples of two CASPR2-Ab-positive

patients. Mice showed changes in

cognition and impaired social

interactions

Long-term neuropathological

changes with activated microglia and

glutamatergic synaptic loss

(121, 122)

CASPR2 37% of selected (brain reactive Abs)

mothers of children with autism spectrum

disorder; 12% of unselected women of

childbearing age

MAb binding CASPR2 cloned from

the mother of an autistic child. Mice

showed impairments in sociability,

flexible learning, and repetitive

behaviors

Abnormal cortical development,

decreased dendritic complexity of

excitatory neurons, and reduced

numbers of inhibitory neurons in the

hippocampus

(123)

NMDAR (NR1

subunit)

Marginal evidence for NMDAR antibodies

in mothers of children with any

psychiatric/neuropsychiatric disorders

mAbs from NMDAR-Ab-positive

women. Mice showed early postnatal

mortality (27.2%), altered blood pH,

and impaired neurodevelopmental

reflexes. Ex vivo, NMDAR reduced in

brain, with altered spontaneous

excitatory postsynaptic currents.

When adult, persistent hyperactivity,

lower anxiety, and impaired

sensorimotor gating

NMDAR was reduced (up to 49.2%),

and electrophysiological properties

were altered, reflected by decreased

amplitudes of spontaneous excitatory

postsynaptic currents in young

neonates (−34.4%). Cerebellum,

midbrain, brain stem volumes

reduced

(124)

are the preferred animals for the majority of immune models;
however, certain strains used can be resistant to development of
diseases, as shown by MG models of active immunization. The
gender is another potentially relevant factor, as hormones can
significantly impact several immunological and neuronal aspects.

Different immunization models have different advantages
and disadvantages. Intraventricular or intraparenchymal
administration routes are useful in exposing the antibodies
to their targets, but they may be misleading when peripheral
antibodies play a major role as appears to be the case for
CASPR2-Abs and LGI1-Abs. On the other hand, peripheral
injection of the antibodies often requires “opening” the BBB by
some method, and these methods may bias the results, allowing
the antibodies to access certain brain areas and not others that
are more relevant to the human disease (128, 129).

Passive transfer of antibodies is ideal to investigate the
downstream mechanisms by which the patient antibodies affect
their targets with possible secondary effects, but by itself, it does
not appear to enlist cellular mechanisms that might be important
in the human condition. Thus, it does not provide insight
into the immunological mechanisms behind the generation of
the antibodies nor the immunological effectors. For instance,
the poor ability of human IgG to fix mouse complement is a
limitation if complement activation plays a relevant part in the
disease. Overall, the immune cells and the Fc receptors relevant
for the human immune response might be different in animal
models due to the use of alternative pathways, different effectors,

and different cellular receptor affinities (130–132). Future passive
transfer studies of patient-derived immune cells into humanized
models or studies in non-human primates might help define
the involvement of specific immune cells in the pathogenesis of
these disorders.

Active immunization models could be helpful in overcoming
some of these limitations and could also be more helpful in
studying the effector immune mechanisms, but few studies have
used this approach to date. Moreover, using peptide sequences
for immunization is unlikely to generate the most appropriate
pathogenic antibodies if the natural disease recognizes the native
membrane protein rather than peptide or polypeptide sequences.

It is also important to note that the failure to reproduce
some clinical features observed in patients might be related
to the experimental approach or timing of protocols. For
example, as shown for NMDAR-Ab, the presence of spontaneous
seizures could be overlooked in the absence of continuous
EEG monitoring (42). Similarly, antibodies may manifest their
maximum effects up to 18 days after CSF infusion (38).
Behavioral testing has to be carefully tailored and should take into
account the effects of habituation and test repetition.

Future research and refinement of these animal models
require a collaborative approach and sharing of optimal methods.
Effective and reliable preclinical testing of novel treatments
demands rigorous and reproducible protocols that not only
allow study of the underlying neurobiology but also facilitate
therapeutic studies with rapid translation to the clinic.
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