3 research outputs found

    Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current

    Get PDF
    We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to all forces in this equation. Blue shift of the nano-oscillator frequency increasing the current is explained by a combination of the exchange, magnetostatic, and Zeeman energy contributions to the frequency nonlinear coefficient. Applicability and limitations of the standard nonlinear nano-oscillator model are discussed.This work was supported in part by the Spanish MINECO grant FIS2010-20979-C02-01. KYG acknowledges support by IKERBASQUE (the Basque Foundation for Science)

    Effective magnetization damping for a dynamical spin texture in metallic ferromagnet

    Get PDF
    An additional magnetization damping for an inhomogeneous spin texture in metallic ferromagnets is calculated on the basis of the s–d exchange model. The effect of conduction electrons on the magnetization dynamics is accounted for the case of slowly varying spin texture within adiabatic approximation by using a coordinate transformation to the local quantization axis. The moving magnetic vortex in a circular nanodot made of permalloy is considered as an example. The dependence of the damping on the dot geometrical sizes is obtained. It is found that the additional damping can reach up to 50% of magnitude of the phenomenological Gilbert damping in the Landau–Lifshitz equation of magnetization motion and should be taken into account for any inhomogeneous spin texture dynamics in ferromagnetic metals

    Створення випробувального стенду кіберзахищеної бортової системи безпілотного авіаційного комплексу для розпізнавання наземних природних, інфраструктурних об’єктів і транспортних засобів

    Get PDF
    Об’єкт дослідження: 1) процес відцентрового робочого насоса та насосне обладнання; 2) процес машинного навчання автономної бортової системи розпізнавання наземних природних та інфраструктурних об’єктів. Мета роботи: 1. Підвищення напірності ступенів насосних агрегатів та забезпечення вібраційної надійності функціональних елементів комплексної гідродинамічної системи на основі удосконалення конструкцій насосного обладнання атомних електростанцій (АЕС) шляхом розроблення технічних проєктів насосів водозабезпечення та допоміжних систем. 2. Удосконалення систем автономної навігації шляхом створення бортової системи, здатної розпізнавати системні і зовнішні трафіки, виявляти кібератаки та несанкціоновані вторгнення
    corecore