821 research outputs found
Counting Statistics and Dephasing Transition in an Electronic Mach-Zehnder Interferometer
It was recently suggested that a novel type of phase transition may occur in
the visibility of electronic Mach-Zehnder Interferometers. Here, we present
experimental evidence for the existence of this transition. The transition is
induced by strongly non-Gaussian noise that originates from the strong coupling
of a quantum point contact to the interferometer. We provide a transparent
physical picture of the effect, by exploiting a close analogy to the
neutrino-oscillations of particle physics. In addition, our experiment
constitutes a probe of the singularity of the elusive full counting statistics
of a quantum point contact.Comment: 7 pages, 4 figures (+Supplement 8 pages, 9 figures
Complete bandgaps in one-dimensional left-handed periodic structures
Artificially fabricated structures with periodically modulated parameters
such as photonic crystals offer novel ways of controlling the flow of light due
to the existence of a range of forbidden frequencies associated with a photonic
bandgap. It is believed that modulation of the refractive index in all three
spatial dimensions is required to open a complete bandgap and prevent the
propagation of electromagnetic waves in all directions. Here we reveal that, in
a sharp contrast to what was known before and contrary to the accepted physical
intuition, a one-dimensional periodic structure containing the layers of
transparent left-handed (or negative-index) metamaterial can trap light in
three-dimensional space due to the existence of a complete bandgap.Comment: 4 pages, 5 figure
Controlled generation and steering of spatial gap solitons
We demonstrate the first fully controlled generation of immobile and slow
spatial gap solitons in nonlinear periodic systems with band-gap spectra, and
reveal the key features of gap solitons which distinguish them from
conventional counterparts, including a dynamical transformation of gap solitons
due to nonlinear inter-band coupling. We also predict theoretically and confirm
experimentally the effect of anomalous steering of gap solitons in
optically-induced photonic lattices.Comment: 4 pages, 5 figure
Scorzonera sensu lato (Asteraceae, Cichorieae) – taxonomic reassessment in the light of new molecular phylogenetic and carpological analyses
Scorzonera comprises 180–190 species and belongs to the subtribe Scorzonerinae. Its circumscription has long been the subject of debate and available molecular phylogenetic analyses affirmed the polyphyly of Scorzonera in its wide sense. We provide a re-evaluation of Scorzonera and other related genera, based on carpological (including anatomical) and extended molecular phylogenetic analyses. We present, for the first time, a comprehensive sampling, including Scorzonera in its widest sense and all other genera recognised in the Scorzonerinae. We conducted phylogenetic analyses using Maximum Parsimony, Maximum Likelihood and Bayesian analyses, based on sequences of the nuclear ribosomal ITS and of two plastid markers (partial rbcL and matK) and Maximum Parsimony for reconstructing the carpological character states at ancestral nodes. Achene characters, especially related to pericarp anatomy, such as general topography of the tissue types, disposition of the mechanical tissue and direction of its fibres, presence or absence of air cavities, provide, in certain cases, support for the phylogenetic lineages revealed. Confirming the polyphyly of Scorzonera, we propose a revised classification of the subtribe, accepting the genera Scorzonera (including four major clades: Scorzonera s. str., S. purpurea, S. albicaulis and Podospermum), Gelasia, Lipschitzia gen. nov. (for the Scorzonera divaricata clade), Pseudopodospermum, Pterachaenia (also including Scorzonera codringtonii), Ramaliella gen. nov. (for the S. polyclada clade) and Takhtajaniantha. A key to the revised genera and a characterisation of the genera and major clades are provided
Giant change in IR light transmission in La_{0.67}Ca_{0.33}MnO_{3} film near the Curie temperature: promising application in optical devices
Transport, magnetic, magneto-optical (Kerr effect) and optical (light
absorption) properties have been studied in an oriented polycrystalline
La_{0.67}Ca_{0.33}MnO_{3} film which shows colossal magneto-resistance. The
correlations between these properties are presented. A giant change in IR light
transmission (more than a 1000-fold decrease) is observed on crossing the Curie
temperature (about 270 K) from high to low temperature. Large changes in
transmittance in a magnetic field were observed as well. The giant changes in
transmittance and the large magneto-transmittance can be used for development
of IR optoelectronic devices controlled by thermal and magnetic fields.
Required material characteristics of doped manganites for these devices are
discussed.Comment: 7 pages, 7 figures, submitted to J. Appl. Phy
Three-dimensional matter-wave vortices in optical lattices
We predict the existence of spatially localized nontrivial vortex states of a
Bose-Einstein condensate with repulsive atomic interaction confined by a
three-dimensional optical lattice. Such vortex-like structures include planar
vortices, their co- and counter-rotating bound states, and distinctly
three-dimensional non-planar vortex states. We demonstrate numerically that
many of these vortex structures are remarkably robust, and therefore can be
generated and observed in experiment.Comment: 4 pages, 6 figure
Parametric localized modes in quadratic nonlinear photonic structures
We analyze two-color spatially localized modes formed by parametrically
coupled fundamental and second-harmonic fields excited at quadratic (or chi-2)
nonlinear interfaces embedded into a linear layered structure --- a
quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic
lattice of nonlinear interfaces, we derive an effective discrete model for the
amplitudes of the fundamental and second-harmonic waves at the interfaces (the
so-called discrete chi-2 equations), and find, numerically and analytically,
the spatially localized solutions --- discrete gap solitons. For a single
nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities and differences with
quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure
- …