82 research outputs found

    Resting-state prefrontal EEG biomarker in correlation with postoperative delirium in elderly patients

    Get PDF
    Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged >70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive status™ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27–0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD

    The BDNF Val66Met Polymorphism Affects the Vulnerability of the Brain Structural Network

    Get PDF
    Val66Met, a naturally occurring polymorphism in the human brain-derived neurotrophic factor (BDNF) gene resulting in a valine (Val) to methionine (Met) substitution at codon 66, plays an important role in neuroplasticity. While the effect of the BDNF Val66Met polymorphism on local brain structures has previously been examined, its impact on the configuration of the graph-based white matter structural networks is yet to be investigated. In the current study, we assessed the effect of the BDNF polymorphism on the network properties and robustness of the graph-based white matter structural networks. Graph theory was employed to investigate the structural connectivity derived from white matter tractography in two groups, Val homozygotes (n = 18) and Met-allele carriers (n = 55). Although there were no differences in the global network measures including global efficiency, local efficiency, and modularity between the two genotype groups, we found the effect of the BDNF Val66Met polymorphism on the robustness properties of the white matter structural networks. Specifically, the white matter structural networks of the Met-allele carrier group showed higher vulnerability to targeted removal of central nodes as compared with those of the Val homozygote group. These findings suggest that the central role of the BDNF Val66Met polymorphism in regards to neuroplasticity may be associated with inherent differences in the robustness of the white matter structural network according to the genetic variants. Furthermore, greater susceptibility to brain disorders in Met-allele carriers may be understood as being due to their limited stability in white matter structural connectivity

    Transcranial direct current stimulation for online gamers: A prospective single-arm feasibility study

    Get PDF
    Aim: Excessive use of online games can have negative influences on mental health and daily functioning. Although the effects of transcranial direct current stimulation (tDCS) have been investigated for the treatment of addiction, it has not been evaluated for excessive online game use. This study aimed to investigate the feasibility and tolerability of tDCS over the dorsolateral prefrontal cortex (DLPFC) in online gamers. Methods: A total of 15 online gamers received 12 active tDCS sessions over the DLPFC (anodal left/cathodal right, 2 mA for 30 min, 3 times per week for 4 weeks). Before and after tDCS sessions, all participants underwent 18F-fluoro-2-deoxyglucose positron emission tomography scans and completed the Internet Addiction Test (IAT), Brief Self Control Scale (BSCS), and Beck Depression Inventory-II (BDI-II). Results: After tDCS sessions, weekly hours spent on games (p = .02) and scores of IAT (p < .001) and BDI-II (p = .01) were decreased, whereas BSCS score was increased (p = .01). Increases in self-control were associated with decreases in both addiction severity (p = .002) and time spent on games (p = .02). Moreover, abnormal right-greater-than-left asymmetry of regional cerebral glucose metabolism in the DLPFC was partially alleviated (p = .04). Conclusions: Our preliminary results suggest that tDCS may be useful for reducing online game use by improving interhemispheric balance of glucose metabolism in the DLPFC and enhancing self-control. Larger sham-controlled studies with longer follow-up period are warranted to validate the efficacy of tDCS in gamers

    Reference-unbiased copy number variant analysis using CGH microarrays

    Get PDF
    Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays provides an opportunity to catalog highly accurate genomic variants of the reference DNA (NA10851). Using information on variants, we developed a new method, the CGH array reference-free algorithm (CARA), which can determine reference-unbiased absolute CNVs from any CGH array platform. The algorithm enables the removal and rescue of false positive and false negative CNVs, respectively, which appear due to the effects of genomic variants of the reference sample in raw CGH array experiments. We found that the CARA remarkably enhanced the accuracy of CGH array in determining absolute CNVs. Our method thus provides a new approach to interpret CGH array data for personalized medicine

    TIARA: a database for accurate analysis of multiple personal genomes based on cross-technology

    Get PDF
    High-throughput genomic technologies have been used to explore personal human genomes for the past few years. Although the integration of technologies is important for high-accuracy detection of personal genomic variations, no databases have been prepared to systematically archive genomes and to facilitate the comparison of personal genomic data sets prepared using a variety of experimental platforms. We describe here the Total Integrated Archive of Short-Read and Array (TIARA; http://tiara.gmi.ac.kr) database, which contains personal genomic information obtained from next generation sequencing (NGS) techniques and ultra-high-resolution comparative genomic hybridization (CGH) arrays. This database improves the accuracy of detecting personal genomic variations, such as SNPs, short indels and structural variants (SVs). At present, 36 individual genomes have been archived and may be displayed in the database. TIARA supports a user-friendly genome browser, which retrieves read-depths (RDs) and log2 ratios from NGS and CGH arrays, respectively. In addition, this database provides information on all genomic variants and the raw data, including short reads and feature-level CGH data, through anonymous file transfer protocol. More personal genomes will be archived as more individuals are analyzed by NGS or CGH array. TIARA provides a new approach to the accurate interpretation of personal genomes for genome research

    Open-label study comparing the efficacy and tolerability of aripiprazole and haloperidol in the treatment of pediatric tic disorders

    Get PDF
    Due to its unique pharmacodynamic properties of dopamine partial agonist activity, and its association with few and mild side effects, aripiprazole is a candidate atypical antipsychotic for patients with tic disorders. This open-label study compared the efficacy and tolerability of aripiprazole with haloperidol, a typical antipsychotic widely used to treat patients with tic disorders. Forty-eight children and adolescents with tic disorders were recruited from the outpatient clinic at South Korea and treated with aripiprazole (initial dose, 5.0 mg/d; maximum dose 20 mg/d) or haloperidol (initial dose, 0.75 mg/d; maximum dose, 4.5 mg/d) for 8 weeks. Treatment efficacy was measured using the yale global tic severity scale (YGTSS), and tolerability was measured using the extrapyramidal symptom rating scale (ESRS) and an adverse effects checklist. Total tic scores as measured by the YGTSS decreased over time in both groups (p < 0.001) without any significant differences between groups. ESRS scores were significantly higher in the haloperidol group during the 4 weeks after commencement of medication (p < 0.05). These results indicate that aripiprazole may be a promising drug in the treatment of children and adolescents with tic disorders. Further controlled studies are needed to determine the efficacy and tolerability of aripiprazole in these patients

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA&apos;s TEMPO and ESA&apos;s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    LED lighting system for better color rendition space: the effect of color rendering index

    No full text
    This study was conducted to investigate Color Rendering Index (CRI) recommendations for light emitting diode (LED) lighting in spaces needing better color rendition. Four LED spectra, that is, two spectra at Commission Internationale de l’Eclairage (CIE) Ra < 80 (79 and 76) and two spectra at CIE Ra ≥ 80 (83 and 84) were used in this study. The CIE Ra lacks accuracy in predicting perceived color quality, and the Fidelity Index and the Gamut Index were used to complement the weakness of CIE Ra. These metrics were combined to quantify the average increase or decrease in chroma. One hundred ninety-four participants evaluated retail-related tasks under different lighting conditions. The results showed that the CIE Ra had significant effects on preference, brightness perception, liveliness, and arousal. LED lights with CIE Ra < 80 received higher scores for preference, brightness perception, liveliness, and arousal than LED lights with CIE Ra ≥ 80, indicating that CIE Ra < 80 is the proper level for LED lighting in spaces needing better color rendition

    Inflammation in Post-Traumatic Stress Disorder (PTSD): A Review of Potential Correlates of PTSD with a Neurological Perspective

    No full text
    Post-traumatic stress disorder (PTSD) is a chronic condition characterized by symptoms of physiological and psychosocial burden. While growing research demonstrated signs of inflammation in PTSD, specific biomarkers that may be representative of PTSD such as the detailed neural correlates underlying the inflammatory responses in relation to trauma exposure are seldom discussed. Here, we review recent studies that explored alterations in key inflammatory markers in PTSD, as well as neuroimaging-based studies that further investigated signs of inflammation within the brain in PTSD, as to provide a comprehensive summary of recent literature with a neurological perspective. A search was conducted on studies published from 2009 through 2019 in PubMed and Web of Science. Fifty original articles were selected. Major findings included elevated levels of serum proinflammatory cytokines in individuals with PTSD across various trauma types, as compared with those without PTSD. Furthermore, neuroimaging-based studies demonstrated that altered inflammatory markers are associated with structural and functional alterations in brain regions that are responsible for the regulation of stress and emotion, including the amygdala, hippocampus, and frontal cortex. Future studies that utilize both central and peripheral inflammatory markers are warranted to elucidate the underlying neurological pathway of the pathophysiology of PTSD
    corecore