9 research outputs found
CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMCEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombinationT.H.S., J.L., J.S. and I.R. are supported by the Ministerio de Economía y Competitividad (MINECO; T.H.S.: BFU2012-39521, J.L.: BFU2012-33960, J.A.S.: SAF2011-28842-C02-01, BFU2014-53681-P and I.R.: BFU2010-18965); P.J.M. is supported by National Institute of Health (NS-37956, CA-21765,) and the CCSG (P30 CA-21765), V.C. is funded by the Associazione Italiana per Ricerca sul Cancro, the European Research Council consolidator grant (614541) and the Association for International Cancer Research (13-0026); the Giovanni Armenise Award was awarded to V.C., the Epigen Progetto Bandiera (4.7) and the Fondazione Telethon (GGP13071); and U.W. is supported by the European Community’s Seventh Framework Programme FP7/ 2009 under grant agreement number 241955 (SYSCILIA), P.A.K. was supported by an Early Postdoc Mobility fellowship from the Swiss National Science Foundation, B.T. by a Severo Ochoa FPI fellowship (MINECO) and M.M. by a Marie Curie Action (COFUND) within the EU 7th Framework programm
A perikinetochoric ring defined by MCAK and Aurora-B as a novel centromere domain
Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions
CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase
In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairin
Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation
Sex chromosomes, synapsis, and cohesins: a complex affair
The final publication is available at http://link.springer.co
An ancient testis-specific IQ motif-containing H gene regulates specific transcript isoform expression during spermatogenesis
Spermatogenic cells express more alternatively spliced RNAs than most whole tissues; however, the regulation of these events remains unclear. Here, we have characterized the function of a testis-specific IQ motif-containing H gene (Iqch) using a mutant mouse model. We found that Iqch is essential for the specific expression of RNA isoforms during spermatogenesis. Using immunohistochemistry of the testis, we noted that Iqch was expressed mainly in the nucleus of spermatocyte and spermatid, where IQCH appeared juxtaposed with SRRM2 and ERSP1 in the nuclear speckles, suggesting that interactions among these proteins regulate alternative splicing (AS). Using RNA-seq, we found that mutant Iqch produces alterations in gene expression, including the clear downregulation of testis-specific lncRNAs and protein-coding genes at the spermatid stage, and AS modifications – principally increased intron retention – resulting in complete male infertility. Interestingly, we identified previously unreported spliced transcripts in the wild-type testis, while mutant Iqch modified the expression and use of hundreds of RNA isoforms, favouring the expression of the canonical form. This suggests that Iqch is part of a splicing control mechanism, which is essential in germ cell biologyThis study was funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (PID2021-122507OB-I00 and PID2020-117491GB-I00) and the European Union NextGenerationEU/PRTR. P.N.-L. was supported by a pre-doctoral fellowship from the Ministerio de Ciencia e Innovación (PRE2019-088813) and M.L. was supported by a Juan de la Cierva postdoctoral contract (FJC2019-040385-I) from the Ministerio de Ciencia e Innovación. Open access funding provided by Consejo Superior de Investigaciones Cientıficas. Deposited in PMC for immediate releas
The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility
Análisis ultraestructural y citoquímico del nucleolo durante la espermatogénesis de pycnogaster (orthoptera: tettigoniidae)
Tesis doctoral inédita leida en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología. Fecha de lectura: 28 de Noviembre de 198
The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility
The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α-kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L-deficient females are fertile but develop an age-dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural agin