173 research outputs found

    Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool

    No full text
    Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation

    Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool

    No full text
    Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation

    Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine

    No full text
    Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine

    Quantitative, High-Throughput Assays for Proteolytic Degradation of Amylin

    No full text
    Amylin is a pancreatic peptide hormone that regulates glucose homeostasis but also aggregates to form islet amyloid in type-2 diabetes. Given its role in both health and disease, there is renewed interest in proteolytic degradation of amylin by insulin-degrading enzyme (IDE) and other proteases. Here, we describe the development and detailed characterization of three novel assays for amylin degradation, two based on a fluoresceinated and biotinylated form of rodent amylin (fluorescein-rodent amylin-biotin, FrAB), which can be used for any amylin protease, and another based on an internally quenched fluorogenic substrate (FRET-based amylin, FRAM), which is more specific for IDE. The FrAB-based substrate can be used in a readily implemented fluorescence-based protocol or in a fluorescence polarization (FP)-based protocol that is more amenable to high-throughput screening (HTS), whereas the FRAM substrate has the advantage of permitting continuous monitoring of proteolytic activity. All three assays yield highly quantitative data and are resistant to DMSO, and the FRAM and FP-based FrAB assay are ideally suited to HTS applications

    DS_DISC786509 – Supplemental material for Development and Characterization of Quantitative, High-Throughput-Compatible Assays for Proteolytic Degradation of Glucagon

    No full text
    <p>Supplemental material, DS_DISC786509 for Development and Characterization of Quantitative, High-Throughput-Compatible Assays for Proteolytic Degradation of Glucagon by Caitlin N. Suire, Shelley Lane and Malcolm A. Leissring in SLAS Discovery</p

    Targeting Insulin-Degrading Enzyme in Insulin Clearance

    Get PDF
    © 2021 by the authors.Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.This research was funded by the Ministerio de Economía, Industria y Competitividad, grant number SAF2016-77871-C2-2-R to G.P.; Ministerio de Ciencia e Innovación PID2019-110496RB-C22 to G.P.; European Foundation for the Study of Diabetes (European Diabetes Research Programme on New Targets for Type 2 Diabetes supported by MSD-2017) to G.P.; European Foundation for the Study of Diabetes (EFSD) -Novo Nordisk to B.M.; and the US National Institutes of Health (GM115617) to M.A.L. The project leading to these results has received funding from “La Caixa” Foundation, under agreement LCF/PR/PR18/51130007 to G.P. C.M.G.-C. was supported by a fellowship from the Junta de Castilla y León and the European Social Fund (ORDER EDU/574/2018). B.M. was supported by a “Rising Star” fellowship (EFSD-Novo Nordisk)

    Hydroxypyridinethione Inhibitors of Human Insulin‐Degrading Enzyme

    No full text
    Insulin-degrading enzyme (IDE) is a human mononuclear Zn(2+)-dependent metalloenzyme that is widely regarded as the primary peptidase responsible for insulin degradation. Despite its name, IDE is also critically involved in the hydrolysis of several other disparate peptide hormones, including glucagon, amylin, and the amyloid β-protein. As such, the study of IDE inhibition is highly relevant to deciphering the role of IDE in conditions such as type-2 diabetes mellitus and Alzheimer disease. There have been few reported IDE inhibitors, and of these, inhibitors that directly target the active-site Zn(2+) ion have yet to be fully explored. In an effort to discover new, zinc-targeting inhibitors of IDE, a library of ~350 metal-binding pharmacophores was screened against IDE, resulting in the identification of 1-hydroxypyridine-2-thione (1,2-HOPTO) as an effective Zn(2+)-binding scaffold. Screening a focused library of HOPTO compounds identified 3-sulfonamide derivatives of 1,2-HOPTO as inhibitors of IDE (K(i) values of ~50 μM). Further structure-activity relationship studies yielded several thiophene-sulfonamide HOPTO derivatives with good, broad-spectrum activity against IDE that have the potential to be useful pharmacological tools for future studies of IDE

    Peptidic inhibitors of insulin-degrading enzyme with potential for dermatological applications discovered via phage display.

    No full text
    Insulin-degrading enzyme (IDE) is an atypical zinc-metalloendopeptidase that hydrolyzes insulin and other intermediate-sized peptide hormones, many of which are implicated in skin health and wound healing. Pharmacological inhibitors of IDE administered internally have been shown to slow the breakdown of insulin and thereby potentiate insulin action. Given the importance of insulin and other IDE substrates for a variety of dermatological processes, pharmacological inhibitors of IDE suitable for topical applications would be expected to hold significant therapeutic and cosmetic potential. Existing IDE inhibitors, however, are prohibitively expensive, difficult to synthesize and of undetermined toxicity. Here we used phage display to discover novel peptidic inhibitors of IDE, which were subsequently characterized in vitro and in cell culture assays. Among several peptide sequences tested, a cyclic dodecapeptide dubbed P12-3A was found to potently inhibit the degradation of insulin (Ki = 2.5 ± 0.31 μM) and other substrates by IDE, while also being resistant to degradation, stable in biological milieu, and highly selective for IDE. In cell culture, P12-3A was shown to potentiate several insulin-induced processes, including the transcription, translation and secretion of alpha-1 type I collagen in primary murine skin fibroblasts, and the migration of keratinocytes in a scratch wound migration assay. By virtue of its potency, stability, specificity for IDE, low cost of synthesis, and demonstrated ability to potentiate insulin-induced processes involved in wound healing and skin health, P12-3A holds significant therapeutic and cosmetic potential for topical applications
    corecore