52 research outputs found

    Visualization of the small RNA transcriptome using seqclusterViz

    Get PDF
    The study of small RNAs provides us with a deeper understanding of the complexity of gene regulation within cells. Of the different types of small RNAs, the most important in mammals are miRNA, tRNA fragments and piRNAs. Using small RNA-seq analysis, we can study all small RNA types simultaneously, with the potential to detect novel small RNA types. We describe SeqclusterViz, an interactive HTML-javascript webpage for visualizing small noncoding RNAs (small RNAs) detected by Seqcluster. The SeqclusterViz tool allows users to visualize known and novel small RNA types in model or non-model organisms, and to select small RNA candidates for further validation. SeqclusterViz is divided into three panels: i) query-ready tables showing detected small RNA clusters and their genomic locations, ii) the expression profile over the precursor for all the samples together with RNA secondary structures, and iii) the mostly highly expressed sequences. Here, we show the capabilities of the visualization tool and its validation using human brain samples from patients with Parkinson's disease

    Visualization of the small RNA transcriptome using seqclusterViz [version 1; peer review: 2 approved]

    Get PDF
    The study of small RNAs provides us with a deeper understanding of the complexity of gene regulation within cells. Of the different types of small RNAs, the most important in mammals are miRNA, tRNA fragments and piRNAs. Using small RNA-seq analysis, we can study all small RNA types simultaneously, with the potential to detect novel small RNA types. We describe SeqclusterViz, an interactive HTML-javascript webpage for visualizing small noncoding RNAs (small RNAs) detected by Seqcluster. The SeqclusterViz tool allows users to visualize known and novel small RNA types in model or non-model organisms, and to select small RNA candidates for further validation. SeqclusterViz is divided into three panels: i) query-ready tables showing detected small RNA clusters and their genomic locations, ii) the expression profile over the precursor for all the samples together with RNA secondary structures, and iii) the mostly highly expressed sequences. Here, we show the capabilities of the visualization tool and its validation using human brain samples from patients with Parkinson’s disease

    The Association of Virulence Factors with Genomic Islands

    Get PDF
    Background: It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage. Methodology/Principal Findings: We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p,1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more ‘‘offensive’ ’ functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study. Conclusions/Significance: This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. ‘‘Offensive’ ’ virulence factors, as opposed to host-interaction factors, may more ofte

    oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    Get PDF
    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes

    Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation

    Get PDF
    Using the Pseudomonas aeruginosa Genome Project as a test case, we have developed a database and submission system to facilitate a community-based approach to continually updated genome annotation (http://www.pseudomonas.com). Researchers submit proposed annotation updates through one of three web-based form options which are then subjected to review, and if accepted, entered into both the database and log file of updates with author acknowledgement. In addition, a coordinator continually reviews literature for suitable updates, as we have found such reviews to be the most efficient. Both the annotations database and updates-log database have Boolean search capability with the ability to sort results and download all data or search results as tab-delimited files. To complement this peer-reviewed genome annotation, we also provide a linked GBrowse view which displays alternate annotations. Additional tools and analyses are also integrated, including PseudoCyc, and knockout mutant information. We propose that this database system, with its focus on facilitating flexible queries of the data and providing access to both peer-reviewed annotations as well as alternate annotation information, may be a suitable model for other genome projects wishing to use a continually updated, community-based annotation approach. The source code is freely available under GNU General Public Licence

    Prenatal Lead Levels, Plasma Amyloid β Levels, and Gene Expression in Young Adulthood

    Get PDF
    Background: Animal studies suggest that early-life lead exposure influences gene expression and production of proteins associated with Alzheimer’s disease (AD)

    The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections

    Get PDF
    Summary: Patients with systemic lupus erythematosus (SLE) suffer frequent infections that account for significant morbidity and mortality. T cell cytotoxic responses are decreased in patients with SLE, yet the responsible molecular events are largely unknown. We find an expanded CD8CD38high T cell subset in a subgroup of patients with increased rates of infections. CD8CD38high T cells from healthy subjects and patients with SLE display decreased cytotoxic capacity, degranulation, and expression of granzymes A and B and perforin. The key cytotoxicity-related transcription factors T-bet, RUNX3, and EOMES are decreased in CD8CD38high T cells. CD38 leads to increased acetylated EZH2 through inhibition of the deacetylase Sirtuin1. Acetylated EZH2 represses RUNX3 expression, whereas inhibition of EZH2 restores CD8 T cell cytotoxic responses. We propose that high levels of CD38 lead to decreased CD8 T cell-mediated cytotoxicity and increased propensity to infections in patients with SLE, a process that can be reversed pharmacologically. : Katsuyama et al. find that an expanded CD8CD38high T cell population in SLE patients is linked to infections. CD8CD38high T cells display decreased cytotoxic capacity by suppressing the expression of related molecules through an NAD+/Sirtuin1/EZH2 pathway. EZH2 inhibitors increase cytotoxicity offering a means to mitigate infection rates in SLE. Keywords: systemic lupus erythematosus, patients, CD8 T cell, CD38, cytotoxicity, infection, nicotinamide adenine dinucleotide, Sirtuin1, EZH

    oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    Get PDF
    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM

    WNT signalling control by KDM5C during development affects cognition

    Get PDF
    Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function
    corecore