5,177 research outputs found

    Quantum squeezing of motion in a mechanical resonator

    Get PDF
    As a result of the quantum, wave-like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the quantum ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. In this work, using microwave frequency radiation pressure, we both prepare a micron-scale mechanical system in a state near the quantum ground state and then manipulate its thermal fluctuations to produce a stationary, quadrature-squeezed state. We deduce that the variance of one motional quadrature is 0.80 times the zero-point level, or 1 dB of sub-zero-point squeezing. This work is relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultra-sensitive sensing of force and motion

    Relationship between sport website quality and consumption intentions: Application of a bifactor model

    Get PDF
    This study investigated the cognitive structure of sport website quality constructs by comparing a bifactor model (a.k.a., a general-specific model) to a second-order model. The models are two alternative approaches for representing general constructs consisting of several highly related but distinct domains. In addition, the link between sport website quality and the revisitation and media consumption intentions was empirically tested. Data (N=272) were collected through an online survey, and the majority of respondents were men (66.3%) between 21 and 30 years old (63.0%). The bifactor and second-order models of sport website quality were also assessed and compared, and a simultaneous equation modeling analysis was used. The bifactor model fit the data significantly better than the second-order model, indicating that the five sub-constructs revealed both the specific dimensions of sport website quality and the holistic nature of sport website quality. Results from the simultaneous equation model indicated that sport website quality explained 70.2% of the variance in revisitation and 58.7% of intention to consume sports media. © The Author(s) 2016

    Analysis of White Dwarfs with Strange-Matter Cores

    Full text link
    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs which are possible candidates for strange matter cores and suggest observational tests of this hypothesis.Comment: 11 pages, 6 figures, accepted for publication in J. Phys. G: Nucl. Part. Phy

    An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang

    Get PDF
    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow.Comment: Author's version, including the main paper and the Supplementary Materials (16+21 pages, 3+3 figures

    Finite temperature effects on cosmological baryon diffusion and inhomogeneous Big-Bang nucleosynthesis

    Get PDF
    We have studied finite temperature corrections to the baryon transport cross sections and diffusion coefficients. These corrections are based upon the recently computed renormalized electron mass and the modified state density due to the background thermal bath in the early universe. It is found that the optimum nucleosynthesis yields computed using our diffusion coefficients shift to longer distance scales by a factor of about 3. We also find that the minimum value of 4He^4 He abundance decreases by ΔYp0.01\Delta Y_p \simeq 0.01 while DD and 7Li^7 Li increase. Effects of these results on constraints from primordial nucleosynthesis are discussed. In particular, we find that a large baryonic contribution to the closure density (\Omega_b h_{50}^{2} \lsim 0.4) may be allowed in inhomogeneous models corrected for finite temperature.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter

    Full text link
    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multi-anode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and started collecting colliding beam data by the end of the same year. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version published in IEEE-Trans.Nucl.Sci.

    The two-dimensional quantum Heisenberg antiferromagnet: effective Hamiltonian approach to the thermodynamics

    Full text link
    In this paper we present an extensive study of the thermodynamic properties of the two-dimensional quantum Heisenberg antiferromagnet on the square lattice; the problem is tackled by the pure-quantum self-consistent harmonic approximation, previously applied to quantum spin systems with easy-plane anisotropies, modeled to fit the peculiar features of an isotropic system. Internal energy, specific heat, correlation functions, staggered susceptibility, and correlation length are shown for different values of the spin, and compared with the available high-temperature expansion and quantum Monte Carlo results, as well as with the available experimental data.Comment: 14 pages, 13 Postscript figures embedded by psfig.sty; revisions: paper shortened, some parts moved in the appendices, 4 figures replaced by 2 only, minor errors correcte

    Happiness and life satisfaction in Rwanda

    Get PDF
    This study investigated predictors of happiness and life satisfaction in Rwanda. Data from the World Values Survey and gathered from 3 030 Rwandese (age ranging 16 to 90 years, mean age = 34.2, SD = 12.7; females = 50.5%) were pooled for the analysis. For the comparison, international World Values Survey data were utilised. A fixed effects multilevel regression model was used to predict happiness and life satisfaction from gender, health, socio-economic, and some subjective measures. Males had greater self-rated happiness and life satisfaction scores than females. State of health and sense of freedom of choice predicted both happiness and life satisfaction. Valuing of friends, weekly religious attendance, and national pride positively predicted happiness, whereas household’s financial satisfaction, full-time employment, high-income group, being a student, and sense of trust predicted life satisfaction. This study suggests that health status, household’s financial satisfaction and emancipative values could maximise subjective well-being in Rwanda
    corecore