277 research outputs found
A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry
The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report
Visualizing RibbonâtoâRibbon Heterogeneity of Chemically Unzipped Wide Graphene Nanoribbons by Silver NanowireâBased TipâEnhanced Raman Scattering Microscopy
Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production. The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs. However, details of the resultant GNR structure, as well as the reaction mechanism, are not fully understood due to the necessity of nanoscale spectroscopy. In this regard, silver nanowire-based tip-enhanced Raman spectroscopy (TERS) is applied for single GNR analysis and investigated ribbon-to-ribbon heterogeneity in terms of defect density and edge structure generated through the unzipping process. The authors found that sGNRs originated from the inner walls of DWNTs showed lower defect densities than those from the outer walls. Furthermore, TERS spectra of sGNRs exhibit a large variety in graphitic Raman parameters, indicating a large variation in edge structures. This work at the single GNR level reveals, for the first time, ribbon-to-ribbon heterogeneity that can never be observed by diffraction-limited techniques and provides deeper insights into unzipped GNR structure as well as the DWNT unzipping reaction mechanism
Centrality dependence of pi^[+/-], K^[+/-], p and p-bar production from sqrt(s_NN)=130 GeV Au + Au collisions at RHIC
Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at
mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX
experiment at RHIC as a function of collision centrality. Average transverse
momenta increase with the number of participating nucleons in a similar way for
all particle species. The multiplicity densities scale faster than the number
of participating nucleons. Kaon and nucleon yields per participant increase
faster than the pion yields. In central collisions at high transverse momenta
(p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the
pion yields.Comment: 6 pages, 3 figures, 1 table, 307 authors, accepted by Phys. Rev.
Lett. on 9 April 2002. This version has minor changes made in response to
referee Comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at sqrt(s_NN) = 130 GeV
Two particle azimuthal correlation functions are presented for charged
hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The
measurements permit determination of elliptic flow without event-by-event
estimation of the reaction plane. The extracted elliptic flow values v_2 show
significant sensitivity to both the collision centrality and the transverse
momenta of emitted hadrons, suggesting rapid thermalization and relatively
strong velocity fields. When scaled by the eccentricity of the collision zone,
epsilon, the scaled elliptic flow shows little or no dependence on centrality
for charged hadrons with relatively low p_T. A breakdown of this epsilon
scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most
central collisions.Comment: 6 pages, RevTeX 3, 4 figures, 307 authors, submitted to Phys. Rev.
Lett. on 11 April 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV
Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the
PHENIX detector at RHIC, are used to investigate local net charge fluctuations
among particles produced near mid-rapidity. According to recent suggestions,
such fluctuations may carry information from the Quark Gluon Plasma. This
analysis shows that the fluctuations are dominated by a stochastic distribution
of particles, but are also sensitive to other effects, like global charge
conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev.
Lett. on 21 March, 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Event-by-event fluctuations in Mean and Mean in sqrt(s_NN) = 130 GeV Au+Au Collisions
Distributions of event-by-event fluctuations of the mean transverse momentum
and mean transverse energy near mid-rapidity have been measured in Au+Au
collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to
what is expected for statistically independent particle emission, the magnitude
of non-statistical fluctuations in mean transverse momentum is determined to be
consistent with zero. Also, no significant non-random fluctuations in mean
transverse energy are observed. By constructing a fluctuation model with two
event classes that preserve the mean and variance of the semi-inclusive p_T or
e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au
collisions.Comment: 10 pages, RevTeX 3, 7 figures, 4 tables, 307 authors, submitted to
Phys. Rev. C on 22 March 2002. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (will be made)
publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV
We present results for the charged-particle multiplicity distribution at
mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the
PHENIX detector at RHIC. For the 5% most central collisions we find
. The results,
analyzed as a function of centrality, show a steady rise of the particle
density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor
changes to figure labels and text to meet PRL requirements. One author added:
M. Hibino of Waseda Universit
Measurement of the mid-rapidity transverse energy distribution from GeV Au+Au collisions at RHIC
The first measurement of energy produced transverse to the beam direction at
RHIC is presented. The mid-rapidity transverse energy density per participating
nucleon rises steadily with the number of participants, closely paralleling the
rise in charged-particle density, such that E_T / N_ch remains relatively
constant as a function of centrality. The energy density calculated via
Bjorken's prescription for the 2% most central Au+Au collisions at
sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of
1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).Comment: 307 authors, 6 pages, 4 figures, 1 table, submitted to PRL 4/18/2001;
revised version submitted to PRL 5/24/200
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201
- âŠ