5 research outputs found

    Characterization of Geographical and Meteorological Parameters

    Get PDF
    [EN]This chapter is devoted to the introduction of some geographical and meteorological information involved in the numerical modeling of wind fields and solar radiation. First, a brief description of the topographical data given by a Digital Elevation Model and Land Cover databases is provided. In particular, the Information System of Land Cover of Spain (SIOSE) is considered. The study is focused on the roughness length and the displacement height parameters that appear in the logarithmic wind profile, as well as in the albedo related to solar radiation computation. An extended literature review and characterization of both parameters are reported. Next, the concept of atmospheric stability is introduced from the Monin–Obukhov similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable Boundary Layers (SBL). The latter considers the effect of the free-flow static stability and baroclinicity on the turbulent transport of momentum and of the Convective Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well as the model of turbulent entrainment

    Escoamento atmosférico no Centro de Lançamento de Alcântara (CLA): parte I - aspectos observacionais Flow at the Alcantara Launching Center: part I - observational aspects

    No full text
    O escoamento atmosférico no Centro de Lançamento de Alcântara (CLA) foi investigado através de análises de perfis de vento, sendo os dados coletados através de sensores de direção e velocidade do vento, instalados em uma torre anemométrica (TA) (com 6 níveis de medidas em 6, 10, 16,3, 28,5, 43 e 70 m), no período de 1995-1999. Esta TA situa-se a 200 m da costa litorânea, que se apresenta na forma de uma falésia e está posicionada próximo à rampa de lançamento de foguetes. Um conjunto de dados adicional (anos de 2004-2005) foi também utilizado para as análises de validação. Os resultados mostraram que a velocidade de fricção (u*) foi igual a 0,32 ± 0,13 m/s (0,46 ± 0,11) para os meses de chuva (seco), enquanto que o parâmetro de rugosidade (z0) foi igual a 0,19 ± 0,32 (0,06 ± 0,05 m) para os meses de chuva (seco), mostrando a sazonalidade destes parâmetros. O expoente ± da velocidade potencial variou de 0,19 (julho) a 0,27 (março), decrescendo este valor com a altura tanto no período de chuvas, quanto no período seco. A validação dos valores de α, com dados de vento dos anos de 2004 e 2005, mostraram que, para o mês representativo da estação chuvosa (março), os valores estimados foram superiores aos observados na TA, devido à fraca condição de neutralidade. Para o mês seco, as velocidades calculadas e observadas foram muito próximas, uma vez que a velocidade do vento é forte (valor médio superior a 10 m/s), produzindo muita mistura turbulenta na forma mecânica e implicando em uma atmosfera neutra.The atmospheric flow at the Alcantara Launching Center (CLA) was studied through analysis of the wind profile data measured during the period from 1995 to 1999 (considered as a control) at six levels (6, 10, 16.3, 28.5, 43 and 70 m) on an anemometric tower (TA), which is placed 200 m from the sea coast (50 m height cliff), near the rocket launching platform. Two additional years (2004-2005) data set were used for validation analysis. The results showed that the friction velocity (u*) was equal to 0.32 ± 0.13 m/s (0.46 ± 0.11 m/s) during the rainy (dry) period, while the roughness length (z0) was equal to 0.19 ± 0.32 m (0.06 ± 0.05 m) for the rainy (dry) period, thus showing the seasonality of these turbulence parameters. The exponent ± of the wind velocity Power Law varied from 0.19 (July) to 0.27 (March), presenting a decrease on the coefficient (α) with altitude. Using the data set from 2004-2005, for a typical rainy month (March), it was showed that the estimated velocities are greater than the measured ones, which was due to the weaker atmospheric neutrality conditions. However, for a dry month, the estimated and computed velocities were about the same, as the mechanical turbulence (wind speed) is higher than 10 m/s and thus implying a neutral atmosphere condition

    Variabilidade temporal do fluxo da radiação de ondas longas no Brasil e vizinhanças no período de 1979 a 2008 - Parte I: Oscilação Intrasazonal

    No full text
    This study deals with the intraseasonal variability of Outgoing Longwave Radiation (OLR) flux over Brazil and vicinities. The analyses were done using wavelet transform and daily OLR data from the Advanced Very High Resolution Radiometer (AVHRR) for the January 1979 to December 2008 period. The obtained results show that wavelets allow to map the intraseasonal component of OLR and its month to month evolution in broad areas in central Brazil, where the signal is strong in the South Atlantic Convergence Zone and also in the Midwest, Southeast and Northeast Brazil.Pages: 2250-225

    Variabilidade temporal do fluxo da radiação de ondas longas no Brasil e vizinhanças no período de 1979 a 2008 - Parte II: Ciclo anual

    No full text
    Using outgoing longwave radiation (OLR) flux over Brazil and vicinities this study analyses the annual cycle of this variable during the January 1979 - December 2008 period. The study were done using daily data of OLR derived from radiances measured by heliosynchronous meteorological satellite and wavelet transform. The obtained results characterize very well the seasonal progression of the annual cycle depicting the favorable and unfavorable regions for developing convective activity. From the beginning of the rainy season in the tropics a broad area with negative amplitude dominates the central and southern Amazonia, gradually spreading north and northeastward. In the dry season a similar amplitude phase pattern is observed in this region, but involving an opposite amplitude. It was also observed a significant year to year variability of the OLR annual cycle mostly in the central Brazil and southern Amazonia.Pages: 2203-220

    Escoamento atmosférico no Centro de Lançamento de Alcântara (CLA): parte II - ensaios no túnel de vento Atmospheric flow at the Alcantara Lauching Center (ALC): part II - experiments at a wind tunnel

    No full text
    Estudou-se o escoamento atmosférico no Centro de Lançamento de Alcântara (CLA), localizado junto a uma falésia de 50 m de altura, através de simulações em túnel de vento (TV) do CTA/ITA, na escala geométrica 1:1000, com a realização de quatro diferentes ensaios. No TV, os ensaios com degraus de 90° e de 70°, correspondentes à falésia, ambos sem e com simulação de rugosidade adicional a sotavento deles, mostraram: (i) perfeita simulação do perfil de vento oceânico (&#945; = 0,15) sobre a posição do degrau representativo da falésia, utilizando pista de tapete, a montante, para prover a rugosidade necessária; (ii) número de Reynolds máximo possível com comprimento característico igual à altura do degrau neste TV foi 6,52.10(4), enquanto no CLA é da ordem de 3.10(7), razão pela qual é necessário um túnel mais potente; (iii) os expoentes mais próximos dos observados em Roballo e Fisch (2008) foram obtidos com um degrau reto, sem nenhum revestimento especial no piso normal do túnel, exceto o tapete a montante do degrau; (iv) a fixação de cubos a jusante do degrau para representar a vegetação resultou em rugosidades bem maiores que as observadas sobre a vegetação do CLA, possivelmente simulando situações urbanas ou industriais; (v) simulação das características típicas do escoamento após o degrau, tais como o descolamento, a formação de bolha de circulação e nova aderência; (vi) uso de TVs mais potentes certamente permitirá a simulação da situação atmosférica do CLA.<br>The atmospheric flow at the Alcantara Launching Center (ALC), which is localized near a 50 m cliff, was studied through analysis of wind tunnel (WT) experiments, using a 1:1000 geometric scale and floor level configurations to represent the cliff and its downwind roughness. The WT experiments, with 90° and 70° steps representing the cliff, both with and without additional downwind roughness, did show: (i) a perfect simulation of the ocean wind profile (&#945; = 0.15) above the position of the step representing the cliff, through the use of a upwind carpeted fetch to provide the necessary roughness; (ii) the highest Reynolds number possible, based on the height of the cliff, was 6.52 x 10(4) inside this WT, while it reached 3 x10(7) at the ACL - thus, a more powerful tunnel is needed to simulate this last situation; (iii) the values of &#945; nearest to the ones obtained at the ACL resulted from the 90° step experiment without any extra covering over the floor, except the upwind carpet; (iv) the fixing of cubes downwind of the step resulted roughness much greater than the ones observed over the ACL vegetation, so possibly simulating urban or industrial situations; (v) typical characteristics which occur downwind a step were simulated, such as the detachment and the posterior reattachment of the flow, plus the formation of circulation bubbles; (vi) the use of more powerful WTs would certainly permit the simulation of the atmospheric behavior of the ACL
    corecore