2,012 research outputs found

    Second-generation mobile satellite system. A conceptual design and trade-off study

    Get PDF
    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented

    Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.

    Get PDF
    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment

    Scientific mindfulness: a foundation for future themes in international business

    Get PDF
    We conceptualize new ways to qualify what themes should dominate the future IB research agenda by examining three questions: Whom should we ask? What should we ask and which selection criteria should we apply? What are the contextual forces? We propose scientific mindfulness as the way forward for generating themes in IB research

    On a class of invariant coframe operators with application to gravity

    Get PDF
    Let a differential 4D-manifold with a smooth coframe field be given. Consider the operators on it that are linear in the second order derivatives or quadratic in the first order derivatives of the coframe, both with coefficients that depend on the coframe variables. The paper exhibits the class of operators that are invariant under a general change of coordinates, and, also, invariant under the global SO(1,3)-transformation of the coframe. A general class of field equations is constructed. We display two subclasses in it. The subclass of field equations that are derivable from action principles by free variations and the subclass of field equations for which spherical-symmetric solutions, Minkowskian at infinity exist. Then, for the spherical-symmetric solutions, the resulting metric is computed. Invoking the Geodesic Postulate, we find all the equations that are experimentally (by the 3 classical tests) indistinguishable from Einstein field equations. This family includes, of course, also Einstein equations. Moreover, it is shown, explicitly, how to exhibit it. The basic tool employed in the paper is an invariant formulation reminiscent of Cartan's structural equations. The article sheds light on the possibilities and limitations of the coframe gravity. It may also serve as a general procedure to derive covariant field equations

    Disease-specific, neurosphere-derived cells as models for brain disorders

    Get PDF
    There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery

    Large and unexpected enrichment in stratospheric ^(16)O^(13)C^(18)O and its meridional variation

    Get PDF
    The stratospheric CO_2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO_2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO_2 isotopologue ^(16)O^(13)C^(18)O, in concert with ^(18)O and ^(17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO_2 sample to date. We show, through photochemical experiments, that lower ^(16)O^(13)C^(18)O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO_2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher ^(16)O^(13)C^(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO_2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO_2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric ^(16)O^(13)C^(18)O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change

    Response to COVID-19 vaccination in patients on cancer therapy:Analysis in a SARS-CoV-2-naïve population

    Get PDF
    Background: Cancer patients have increased morbidity and mortality from COVID-19, but may respond poorly to vaccination. The Evaluation of COVID-19 Vaccination Efficacy and Rare Events in Solid Tumors (EVEREST) study, comparing seropositivity between cancer patients and healthy controls in a low SARS-CoV-2 community-transmission setting, allows determination of vaccine response with minimal interference from infection. Methods: Solid tumor patients from The Canberra Hospital, Canberra, Australia, and healthy controls who received COVID-19 vaccination between March 2021 and January 2022 were included. Blood samples were collected at baseline, pre-second vaccine dose and at 1, 3 (primary endpoint), and 6 months post-second dose. SARS-CoV-2 anti-spike-RBD (S-RBD) and anti-nucleocapsid IgG antibodies were measured. Results: Ninety-six solid tumor patients and 20 healthy controls were enrolled, with median age 62 years, and 60% were female. Participants received either AZD1222 (65%) or BNT162b2 (35%) COVID-19 vaccines. Seropositivity 3 months post vaccination was 87% (76/87) in patients and 100% (20/20) in controls (p =.12). Seropositivity was observed in 84% of patients on chemotherapy, 80% on immunotherapy, and 96% on targeted therapy (differences not satistically significant). Seropositivity in cancer patients increased from 40% (6/15) after first dose, to 95% (35/37) 1 month after second dose, then dropped to 87% (76/87) 3 months after second dose. Conclusion: Most patients and all controls became seropositive after two vaccine doses. Antibody concentrations and seropositivity showed a decrease between 1 and 3 months post vaccination, highlighting need for booster vaccinations. SARS-CoV-2 infection amplifies S-RBD antibody responses; however, cannot be adequately identified using nucleocapsid serology. This underlines the value of our COVID-naïve population in studying vaccine immunogenicity.</p

    The incidence of scarring on the dorsum of the hand

    Get PDF
    When undertaking image comparison of the hand between accused and perpetrator, it is not unusual for scars to be identified on the back of the hand. To investigate the occurrence of scarring in a discreet sample, a database of 238 individuals was examined, and the dorsum of the right and left hands was gridded for each individual. The position, size and type of scar were recorded within each grid. It was found that, in general, males exhibited a higher incidence of scarring than females. However, males were more likely to show scarring on their left hand whereas females were more likely to exhibit scarring on their right hand. Contrary to the literature, scarring was not most prevalent along the borders of the hand but occurred more frequently in association with the index and middle finger corridor regions. Surgical scars were rare as were large scars whereas linear scars smaller than 6 mm were the most frequently identified. Close to half of the sample did not exhibit scarring on one hand. The importance of understanding the pattern of scarring on the back of the hand is discussed in the light of forensic image comparison analysis

    A New Approach to Measuring Estrogen Exposure and Metabolism in Epidemiologic Studies

    Get PDF
    Endogenous estrogen plays an integral role in the etiology of breast and endometrial cancer, and conceivably ovarian cancer. However, the underlying mechanisms and the importance of patterns of estrogen metabolism and specific estrogen metabolites have not been adequately explored. Long-standing hypotheses, derived from laboratory experiments, have not been tested in epidemiologic research because of the lack of robust, rapid, accurate measurement techniques appropriate for large-scale studies. We have developed a stable isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS(2)) method that can measure concurrently all 15 estrogens and estrogen metabolites (EM) in urine and serum with high sensitivity (level of detection=2.5-3.0fmol EM/mL serum), specificity, accuracy, and precision [laboratory coefficients of variation (CV\u27s) \u3c or =5% for nearly all EM]. The assay requires only extraction, a single chemical derivatization, and less than 0.5mL of serum or urine. By incorporating enzymatic hydrolysis, the assay measures total (glucuronidated+sulfated+unconjugated) EM. If the hydrolysis step is omitted, the assay measures unconjugated EM. Interindividual differences in urinary EM concentrations (pg/mL creatinine), which reflect total EM production, were consistently large, with a range of 10-100-fold for nearly all EM in premenopausal and postmenopausal women and men. Correlational analyses indicated that urinary estrone and estradiol, the most commonly measured EM, do not accurately represent levels of total urinary EM or of the other EM. In serum, all 15 EM were detected as conjugates, but only 5 were detected in unconjugated form. When we compared our assay methods with indirect radioimmunoassays for estrone, estradiol, and estriol and enzyme-linked immunosorbent assays for 2-hydroxyestrone and 16alpha-hydroxyestrone, ranking of individuals agreed well for premenopausal women [Spearman r (r(s))=0.8-0.9], but only moderately for postmenopausal women (r(s)=0.4-0.8). Our absolute readings were consistently lower, especially at the low concentrations characteristic of postmenopausal women, possibly because of improved specificity. We are currently applying our EM measurement techniques in several epidemiologic studies of premenopausal and postmenopausal breast cancer
    corecore