41 research outputs found

    2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole

    Full text link
    Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22

    High Speed Layer by Layer Patterning of Phthalocyanines Langmuir-Blodgett Films by the Atomic Force Microscope

    No full text
    International audienceAnisotropic Langmuir-Blodgett films of phthalocyanine derivatives have been patterned using an atomic force microscope to scan the surface of the film at high scan rate (≳100 ÎŒm/s). The depth of the periodic grooved lines, of width down to 50 nm, formed perpendicular to the fast scan direction can be controlled to the monolayer level through the effect of the load (a few nanonewtons) applied to the tip. It is shown that the patterning results from an oscillation in the feedback loop resulting in a periodic force modulation of a few nanonewtons along each scan line. Using the same principle, we show that the microscope can be modified to write patterns of arbitrary form by the superposition of a given voltage waveform onto the Z piezo voltage

    Archeops: A High Resolution, Large Sky Coverage Balloon Experiment for Mapping CMB Anisotropies

    Get PDF
    44 pages, 24 figures Full resolution postscript at http://publi.archeops.orgArcheops is a balloon-borne instrument dedicated to measuring cosmic microwave background (CMB) temperature anisotropies at high angular resolution (8 arcminutes) over a large fraction (25%) of the sky in the millimetre domain. Based on Planck High Frequency Instrument (HFI) technology, cooled bolometers (0.1 K) scan the sky in total power mode with large circles at constant elevation. During the course of a 24-hour Arctic-night balloon flight, Archeops will observe a complete annulus on the sky in four frequency bands centered at 143, 217, 353 and 545 GHz with an expected sensitivity to CMB fluctuations of \\~100muK for each of the 90 thousand 20 arcminute average pixels. We describe the instrument and its performance obtained during a test flight from Trapani (Sicily) to Spain in July 1999

    Ultra-thin large-aperture vacuum windows for millimeter wavelengths receivers

    No full text
    International audienceTargeting faint polarization patterns arising from Primordial Gravitational Waves in the Cosmic Microwave Background requires excellent observational sensitivity. Optical elements in small aperture experiments such as Bicep3 and Keck Array are designed to optimize throughput and minimize losses from transmission, reflection and scattering at millimeter wavelengths. As aperture size increases, cryostat vacuum windows must withstand larger forces from atmospheric pressure and the solution has often led to a thicker window at the expense of larger transmission loss. We have identified a new candidate material for the fabrication of vacuum windows: with a tensile strength two orders of magnitude larger than previously used materials, woven high-modulus polyethylene could allow for dramatically thinner windows, and therefore significantly reduced losses and higher sensitivity. In these proceedings we investigate the suitability of high-modulus polyethylene windows for ground-based CMB experiments, such as current and future receivers in the Bicep/Keck Array program. This includes characterizing their optical transmission as well as their mechanical behavior under atmospheric pressure. We find that such ultra-thin materials are promising candidates to improve the performance of large-aperture instruments at millimeter wavelengths, and outline a plan for further tests ahead of a possible upcoming field deployment of such a science-grade window

    BICEP2 / Keck Array XI: Beam Characterization and Temperature-to-Polarization Leakage in the BK15 Dataset

    Get PDF
    International audiencePrecision measurements of cosmic microwave background (CMB) polarization require extreme control of instrumental systematics. In a companion paper we have presented cosmological constraints from observations with the BICEP2 and Keck Array experiments up to and including the 2015 observing season (BK15), resulting in the deepest CMB polarization maps to date and a statistical sensitivity to the tensor-to-scalar ratio of σ(r)=0.020\sigma(r) = 0.020. In this work we characterize the beams and constrain potential systematic contamination from main beam shape mismatch at the three BK15 frequencies (95, 150, and 220 GHz). Far-field maps of 7,360 distinct beam patterns taken from 2010-2015 are used to measure differential beam parameters and predict the contribution of temperature-to-polarization leakage to the BK15 B-mode maps. In the multifrequency, multicomponent likelihood analysis that uses BK15, Planck, and WMAP maps to separate sky components, we find that adding this predicted leakage to simulations induces a bias of Δr=0.0027±0.0019\Delta r = 0.0027 \pm 0.0019. Future results using higher-quality beam maps and improved techniques to detect such leakage in CMB data will substantially reduce this uncertainty, enabling the levels of systematics control needed for BICEP Array and other experiments that plan to definitively probe large-field inflation

    Archeops in-flight performance, data processing, and map making

    Get PDF
    International audienceAims:Archeops is a balloon-borne experiment inspired by the Planck satellite and its high frequency instrument (HFI). It is designed to measure the cosmic microwave background (CMB) temperature anisotropies at high angular resolution (~12 arcmin) over a large fraction of the sky (around 30%) at 143, 217, 353, and 545 GHz. The Archeops 353 GHz channel consists of three pairs of polarized sensitive bolometers designed to detect the polarized diffuse emission of Galactic dust. Methods: In this paper we present an update of the instrumental setup, as well as the flight performance for the last Archeops flight campaign (February 2002 from Kiruna, Sweden). We also describe the processing and analysis of the Archeops time-ordered data for that campaign, which led to measurement of the CMB anisotropy power spectrum in the multipole range ℓ = 10-700 and to the first measurements of both the polarized emission of dust at large angular scales and its power spectra in the multipole range ℓ = 3-70 Results: We present maps covering approximately 30% of the sky. These maps contain Galactic emission, including the Galactic plane, in the four Archeops channels at 143, 217, 353, and 545 GHz and CMB anisotropies at 143 and 217 GHz. These are one of the first sub-degree-resolution maps in the millimeter and submillimeter ranges of the large angular-scale diffuse Galactic dust emission and CMB temperature anisotropies, respectively

    BICEP array cryostat and mount design

    No full text
    International audienceBicep Array is a cosmic microwave background (CMB) polarization experiment that will begin observing at the South Pole in early 2019. This experiment replaces the five Bicep2 style receivers that compose the Keck Array with four larger Bicep3 style receivers observing at six frequencies from 30 to 270GHz. The 95GHz and 150GHz receivers will continue to push the already deep Bicep/Keck CMB maps while the 30/40GHz and 220/270GHz receivers will constrain the synchrotron and galactic dust foregrounds respectively. Here we report on the design and performance of the Bicep Array instruments focusing on the mount and cryostat systems

    2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

    No full text
    International audienceBICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from in ationary gravitational waves. BICEP3's focal plane is populated with modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate 6.6μK√s noise performance of the BICEP3 receiver

    BICEP Array: a multi-frequency degree-scale CMB polarimeter

    No full text
    International audienceBicep Array is the newest multi-frequency instrument in the Bicep/Keck Array program. It is comprised of four 550mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. Bicep Array follows Bicep3's modular focal plane concept, and upgrades to 6" wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned Bicep Array program, we project 0.002 ⪅ σ(r) ⪅ 0.006, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope
    corecore