9 research outputs found

    Application of Alpha-Repeat Proteins as Antiviral Molecules Against HIV-1 Targeting Viral Assembly or Maturation

    No full text
    Au cours de notre programme de thèse, nous avons isolé et caractérisé des molécules protéiques à activité antivirale intracellulaire dirigée contre le VIH-1. Ces protéines, appelées aRep, ont été obtenues par criblage d'une banque de protéines artificielles de nouvelle génération, construites de façon combinatoire à partir de protéines naturelles constituées de motifs alpha-hélicoidaux répétés. La cible virale, ou "appât", utilisé pour ce criblage a été une région de la polyprotéine Gag du VIH-1 identifiée comme une cible privilégiée de nouvelles thérapeutiques antivirales, car essentielle à l'assemblage viral, l'empaquetage du génome viral et le clivage de maturation de Gag aboutissant à la formation de virions infectieux. Deux molécules d'aRep à affinité élevée pour la cible virale, l'aRep4E3 (32 kDa; 7 motifs répétés) et l'aRep9A8 (28 kDa; 6 motifs répétés) ont ainsi été identifiées, isolées et clonées. L'étude de l'activité anti-VIH intracellulaire de ces aRep a été réalisée dans différents systèmes d'expression cellulaire, nécessitant la construction de lignées stables de cellules d'insecte et de cellules épithéliales humaines, et leur infection par différents types de vecteurs viraux recombinants, baculovirus ou lentivirus, porteurs du gène rapporteur luciférase. Mais surtout, cette étude a été menée sur des cellules lymphocytaires-T (SupT1), cibles naturelles du virus, exprimant ces aRep et infectées par du VIH-1 naturel infectieux. Nos résultats ont montré que l'aRep4E3 et l'aRep9A8 ont toutes deux un effet négatif significatif sur le cycle réplicatif du VIH-1, mais ciblent des fonctions virales différentes. L'aRep4E3 bloque l'empaquetage du génome viral, tandis que l'aRep9A8 inhibe la maturation et diminue l'infectivité virale. De plus, l'aRep9A8, exprimée de façon constitutive dans les cellules SupT1, leur confère une résistance au VIH: une lignée de SupT1 chroniquement infectée par le VIH-1 a pu être ainsi isolée et maintenue en culture pendant plusieurs semaines, sans effet cytopathique viro-induit apparent. Ces nouvelles données auront des implications non-négligeables dans le choix et la conduite de futures stratégies de thérapie cellulaire anti-VIHHIV-1 infection is a long-term disease which required a long-life treatment. Besides the standard HAART regiment, HIV gene therapy is a promising alternative strategy which give rise to hope for the better HIV-1 treatment. Protein therapeutics is one another technique that represent high impact results in curing various types of disease. It is already become a significant part of current medical treatments. In this study we first designed aRep, a non-immunoglobulin scaffold protein which target two domains of HIV-1 Pr55Gag, SP1-NC and investigated their roles as an intracellular therapeutic agents. Phage display technology was used for the specific isolation of aRep against a critical C-terminal region of the HIV-1 Pr55Gag precursor from a large and diverse library. The antiviral activity of these two Pr55Gag binders was investigated using different cell systems. Two aRep scaffolds aRep4E3 and aRep9A8 were isolated and characterized. aRep4E3 contains 7 repeat motifs (32 kDa), meanwhile aRep9A8 has 6 repeat motifs (28 kDa). These two scaffold molecules found to be able to display antiviral effects on the late stage of HIV-1 replication, by reducing and delaying the viral progeny production. The difference in the molecular mechanism was observed between these two aRep proteins: aRep4E3 mainly interferes with the packaging of the viral genome, meanwhile aRep9A8 interferes with the proteolytic processing of Gag, and performs as a protease inhibitor to prevent the PR cleavage required for the production of newly infectious mature virus. Interestingly, aRep9A8 is able to survive in the chronical HIV-1 infected cells up to D38 pi with the low level of HIV-1 replication. Taken together, results suggested that aRep, a new type of scaffold protein could serve as a promising alternative agent in protein therapy, not only the HIV-1 infection but also the others pathogens or disorder

    Nouveaux agents antiviraux dérivés de protéines cellulaires à motifs répétés et ciblant l’assemblage du VIH

    No full text
    HIV-1 infection is a long-term disease which required a long-life treatment. Besides the standard HAART regiment, HIV gene therapy is a promising alternative strategy which give rise to hope for the better HIV-1 treatment. Protein therapeutics is one another technique that represent high impact results in curing various types of disease. It is already become a significant part of current medical treatments. In this study we first designed aRep, a non-immunoglobulin scaffold protein which target two domains of HIV-1 Pr55Gag, SP1-NC and investigated their roles as an intracellular therapeutic agents. Phage display technology was used for the specific isolation of aRep against a critical C-terminal region of the HIV-1 Pr55Gag precursor from a large and diverse library. The antiviral activity of these two Pr55Gag binders was investigated using different cell systems. Two aRep scaffolds aRep4E3 and aRep9A8 were isolated and characterized. aRep4E3 contains 7 repeat motifs (32 kDa), meanwhile aRep9A8 has 6 repeat motifs (28 kDa). These two scaffold molecules found to be able to display antiviral effects on the late stage of HIV-1 replication, by reducing and delaying the viral progeny production. The difference in the molecular mechanism was observed between these two aRep proteins: aRep4E3 mainly interferes with the packaging of the viral genome, meanwhile aRep9A8 interferes with the proteolytic processing of Gag, and performs as a protease inhibitor to prevent the PR cleavage required for the production of newly infectious mature virus. Interestingly, aRep9A8 is able to survive in the chronical HIV-1 infected cells up to D38 pi with the low level of HIV-1 replication. Taken together, results suggested that aRep, a new type of scaffold protein could serve as a promising alternative agent in protein therapy, not only the HIV-1 infection but also the others pathogens or disordersAu cours de notre programme de thèse, nous avons isolé et caractérisé des molécules protéiques à activité antivirale intracellulaire dirigée contre le VIH-1. Ces protéines, appelées aRep, ont été obtenues par criblage d'une banque de protéines artificielles de nouvelle génération, construites de façon combinatoire à partir de protéines naturelles constituées de motifs alpha-hélicoidaux répétés. La cible virale, ou "appât", utilisé pour ce criblage a été une région de la polyprotéine Gag du VIH-1 identifiée comme une cible privilégiée de nouvelles thérapeutiques antivirales, car essentielle à l'assemblage viral, l'empaquetage du génome viral et le clivage de maturation de Gag aboutissant à la formation de virions infectieux. Deux molécules d'aRep à affinité élevée pour la cible virale, l'aRep4E3 (32 kDa; 7 motifs répétés) et l'aRep9A8 (28 kDa; 6 motifs répétés) ont ainsi été identifiées, isolées et clonées. L'étude de l'activité anti-VIH intracellulaire de ces aRep a été réalisée dans différents systèmes d'expression cellulaire, nécessitant la construction de lignées stables de cellules d'insecte et de cellules épithéliales humaines, et leur infection par différents types de vecteurs viraux recombinants, baculovirus ou lentivirus, porteurs du gène rapporteur luciférase. Mais surtout, cette étude a été menée sur des cellules lymphocytaires-T (SupT1), cibles naturelles du virus, exprimant ces aRep et infectées par du VIH-1 naturel infectieux. Nos résultats ont montré que l'aRep4E3 et l'aRep9A8 ont toutes deux un effet négatif significatif sur le cycle réplicatif du VIH-1, mais ciblent des fonctions virales différentes. L'aRep4E3 bloque l'empaquetage du génome viral, tandis que l'aRep9A8 inhibe la maturation et diminue l'infectivité virale. De plus, l'aRep9A8, exprimée de façon constitutive dans les cellules SupT1, leur confère une résistance au VIH: une lignée de SupT1 chroniquement infectée par le VIH-1 a pu être ainsi isolée et maintenue en culture pendant plusieurs semaines, sans effet cytopathique viro-induit apparent. Ces nouvelles données auront des implications non-négligeables dans le choix et la conduite de futures stratégies de thérapie cellulaire anti-VI

    Theranostic roles of machine learning in clinical management of kidney stone disease

    No full text
    Kidney stone disease (KSD) is a common illness caused by deposition of solid minerals formed inside the kidney. The disease prevalence varies, based on sociodemographic, lifestyle, dietary, genetic, gender, age, environmental and climatic factors, but has been continuously increasing worldwide. KSD is a highly recurrent disease, and the recurrence rate is about 11% within two years after the stone removal. Recently, machine learning has been widely used for KSD detection, stone type prediction, determination of appropriate treatment modality and prediction of therapeutic outcome. This review provides a brief overview of KSD and discusses how machine learning can be applied to diagnostics, therapeutics and prognostics in clinical management of KSD for better therapeutic outcome

    Calcineurin B inhibits calcium oxalate crystallization, growth and aggregation via its high calcium-affinity property

    No full text
    Calcineurin inhibitors (CNIs) are widely used in organ transplantation to suppress immunity and prevent allograft rejection. However, some transplant patients receiving CNIs have hypocitraturia, hyperoxaluria and kidney stone with unclear mechanism. We hypothesized that CNIs suppress activities of urinary calcineurin, which may serve as the stone inhibitor. This study aimed to investigate effects of calcineurin B (CNB) on calcium oxalate monohydrate (COM) stone formation. Sequence and structural analyses revealed that CNB contained four EF-hand (Ca2+-binding) domains, which are known to regulate Ca2+ homeostasis and likely to affect COM crystals. Various crystal assays revealed that CNB dramatically inhibited COM crystallization, crystal growth and crystal aggregation. At an equal amount, degrees of its inhibition against crystallization and crystal growth were slightly inferior to total urinary proteins (TUPs) from healthy subjects that are known to strongly inhibit COM stone formation. Surprisingly, its inhibitory effect against crystal aggregation was slightly superior to TUPs. While TUPs dramatically inhibited crystal-cell adhesion, CNB had no effect on this process. Ca2+-affinity assay revealed that CNB strongly bound Ca2+ at a comparable degree as of TUPs. These findings indicate that CNB serves as a novel inhibitor of COM crystallization, growth and aggregation via its high Ca2+-affinity property

    Selection of Ankyrin Targeting HIV-1 Matrix and Identification of Its Binding Domain

    No full text
    Ankyrin repeat protein is a novel class of non-antibody binding protein that can be applied as an alternative antiretroviral agent. Engineered ankyrin targeting the HIV-1 matrix (MA) would be a promising agent to interfere with HIV replication, since MA plays a major role in multiple processes of the viral life cycle. In this study, MA-specific ankyrin (AnkGAGG31) was isolated from an artificial ankyrin library using a semi-automated selection process with biotinylated MA-streptavidin magnetic beads. The AnkGAGG31-recognition site on MA was determined using both indirect and competitive ELISAs with overlapping MA tri-helical fragments and pentadecapeptides. The AnkGAGG31 showed the highest binding signal to the MA-fragments covering helices 2-3-4 and peptides corresponding to helix 2 (residues 25-43), which were found as the target epitope. This finding was further analyzed by molecular modeling and docking. The rational models of AnkGAGG31-MA complex indicated that the strong binding interaction was shown on helix 2 at key residues K27MA, K30M, and K32MA. Taken together, the identification of the binding domain on the MA target improves our understanding of the AnkGAGG31-MA interaction and provides the information necessary to design innovative protein targeting of the MA protein

    Alpha-helicoidal HEAT-like repeat proteins (alpha Rep) selected as interactors of HIV-1 nucleocapsid negatively interfere with viral genome packaging and virus maturation

    Get PDF
    A new generation of artificial proteins, derived from alpha-helicoidal HEAT-like repeat protein scaffolds (alpha Rep), was previously characterized as an effective source of intracellular interfering proteins. In this work, a phage-displayed library of alpha Rep was screened on a region of HIV-1 Gag polyprotein encompassing the C-terminal domain of the capsid, the SP1 linker and the nucleocapsid. This region is known to be essential for the late steps of HIV-1 life cycle, Gag oligomerization, viral genome packaging and the last cleavage step of Gag, leading to mature, infectious virions. Two strong alpha Rep binders were isolated from the screen, alpha Rep4E3 (32 kDa; 7 internal repeats) and alpha Rep9A8 (28 kDa; 6 internal repeats). Their antiviral activity against HIV-1 was evaluated in VLP-producer cells and in human SupT1 cells challenged with HIV-1. Both alpha Rep4E3 and alpha Rep9A8 showed a modest but significant antiviral effects in all bioassays and cell systems tested. They did not prevent the proviral integration reaction, but negatively interfered with late steps of the HIV-1 life cycle: alpha Rep4E3 blocked the viral genome packaging, whereas alpha Rep9A8 altered both virus maturation and genome packaging. Interestingly, SupT1 cells stably expressing alpha Rep9A8 acquired long-term resistance to HIV-1, implying that alpha Rep proteins can act as antiviral restriction-like factors

    Combined antiviral therapy using designed molecular scaffolds targeting two distinct viral functions, HIV-1 genome integration and capsid assembly

    No full text
    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy

    Broad-Spectrum Antiviral Activity of an Ankyrin Repeat Protein on Viral Assembly against Chimeric NL4-3 Viruses Carrying Gag/PR Derived from Circulating Strains among Northern Thai Patients

    No full text
    Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001⁻2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future
    corecore