12 research outputs found

    "Wissenschaft fürs Wohnzimmer" – two years of interactive, scientific livestreams weekly on YouTube

    Get PDF
    Science communication is becoming increasingly important to connect academia and society, and to counteract fake news among climate change deniers. Online video platforms, such as YouTube, offer great potential for low-threshold communication of scientific knowledge to the general public. In April 2020 a diverse group of researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research launched the YouTube channel "Wissenschaft fürs Wohnzimmer" (translated to "Sitting Room Science") to stream scientific talks about climate change and biodiversity every Thursday evening. Here we report on the numbers and diversity of content, viewers, and presenters from 2 years and 100 episodes of weekly livestreams. Presented topics encompass all areas of polar research, social issues related to climate change, and new technologies to deal with the changing world and climate ahead. We show that constant engagement by a group of co-hosts, and presenters from all topics, career stages, and genders enable a continuous growth of views and subscriptions, i.e. impact. After 783 days the channel gained 30,251 views and 828 subscribers and hosted well-known scientists while enabling especially early career researchers to improve their outreach and media skills. We show that interactive and science-related videos, both live and on-demand, within a pleasant atmosphere, can be produced voluntarily while maintaining high quality. We further discuss challenges and possible improvements for the future. Our experiences may help other researchers to conduct meaningful scientific outreach and to push borders of existing formats with the overall aim of developing a better understanding of climate change and our planet

    Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale

    Get PDF
    Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics

    Redefining the MED13L syndrome

    Get PDF
    Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits

    Redefining the MED13L syndrome.

    No full text
    Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits
    corecore