39 research outputs found

    Chemical tuning of photo- and persistent luminescence of Cr3+-activated beta-Ga2O3 by alloying with Al2O3 and In2O3

    Full text link
    An effect of alloying of the monoclinic beta- Ga2O3 with Al2O3 and In2O3 on the photoluminescent, thermoluminescent and persistent luminescent properties of Cr3+ ions has been comprehensively investigated. For this purpose, various series of Cr3+ and Ca2+ co-doped microcrystalline phosphors were synthesized by the solution combustion method, including pseudobinary compounds like (Ga-Al)2O3 with up to 20% Al and (Ga-In)2O3 with up to 50% In as well as pseudoternary compounds (Ga Al In)2O3 with balanced proportion of Al, Ga and In. The phase composition and crystal structure of the obtained materials were examined by X-ray powder diffraction technique. Detailed luminescence studies were conducted for the (Ga-Al)2O3 and (Ga-In)2O3 compounds which exhibited a single-phase monoclinic structure. Low-temperature and time-resolved photoluminescence investigations of the Cr-doped pseudobinary compounds unveiled several types of Cr3+ centres, attributed to the Al-, Ga- and In-centred octahedra in the studied alloys. The obtained results underscore the benefit of bandgap engineering through alteration in the host lattice chemical composition for efficient tuning of the thermoluminescent and persistent luminescent properties of the near-infrared-emitting beta Ga2O3:Cr based phosphors. Furthermore, it was demonstrated that modification of the chemical composition of the host lattice also adjusts the thermometric performance of the studied phosphors. Indeed, the specific sensitivity of the beta- Ga2O3:Cr3+ decay time luminescence thermometer showed nearly twofold enhancement when the host lattice was alloyed with 30% of In2O3.Comment: 35 pages, 14 figure

    Preliminary study on Se-enriched Lentinula edodes mycelium as a proposal of new feed additive in selenium deficiency

    Get PDF
    The presence of selenium in European soil is low and this causes its deficiency in livestock and, in consequence, in humans. This study aimed to obtain Lentinula (L.) edodes mycelium with the maximum content of selenium. This species was used for experiment based on its documented medicinal properties. Calves were fed with selenium-enriched L. edodes mycelium, and serum selenium concentration, average daily weight gains and selected immune parameters were estimated. The selenium-enriched mushroom was found to be safe based on cytotoxicity tests (MTT and LDH tests) and for this reason it was used for further experiments. The mean quantity of selenium in the serum of calves fed with selenium-enriched L. edodes mycelium was significantly higher than that of control calves. Additionally, the calves fed with selenium-enriched L. edodes mycelium had higher body weight gains than those of control calves. White blood cell counts and subpopulations of lymphocytes in the experimental and control calves were within the reference range. The administration of L. edodes enriched with selenium had a beneficial effect on state of health of the calves

    Iron deficiency contributes to resistance to endogenous erythropoietin in anaemic heart failure patients

    Get PDF
    Aims Abnormal endogenous erythropoietin (EPO) constitutes an important cause of anaemia in chronic diseases. We analysed the relationships between iron deficiency (ID) and the adequacy of endogenous EPO in anaemic heart failure (HF) patients, and the impact of abnormal EPO on 12-month mortality. Methods and results We investigated 435 anaemic HF patients (age: 74 +/- 10 years; males: 60%; New York Heart Association class I or II: 39%; left ventricular ejection fraction: 43 +/- 17%). Patients with EPO higher than expected for a given haemoglobin were considered EPO-resistant whereas those with EPO lower than expected - EPO-deficient. ID was defined as serum ferriti

    High soluble transferrin receptor in patients with heart failure:a measure of iron deficiency and a strong predictor of mortality

    Get PDF
    Background: Iron deficiency (ID) is frequent in heart failure (HF), linked with exercise intolerance and poor prognosis. Intravenous iron repletion improves clinical status in HF patients with LVEF≤45%. However, uncertainty exists about the accuracy of serum biomarkers in diagnosing ID. Study Aims: 1) to identify the iron biomarker with the greatest accuracy for the diagnosis of ID in bone marrow in patients with ischaemic HF; 2) to establish the prevalence of ID using this biomarker and its prognostic value in HF patients. Methods and Results: Bone marrow was stained for iron in 30 patients with ischaemic HF with LVEF≤45% and 10 healthy controls, and ID was diagnosed for 0‐1 grades (Gale scale). 791 patients with HF with LVEF≤45% were prospectively followed‐up for 3 years. Serum ferritin, transferrin saturation, soluble transferrin receptor (sTfR) were assessed as iron biomarkers. Most patients with HF (25, 83%) had ID in bone marrow, but none of the controls (p<0.001). Serum sTfR had the best accuracy in predicting ID in bone marrow (AUC: 0.920, 95%CI: 0.761‐0.987, for cut‐off 1.25 mg/L sensitivity 84%, specificity 100%). Serum sTfR was ≥1.25 mg/L in 47% of HF patients, in 56% and 46% of anaemics and non‐anaemics, respectively (p<0.05). The reclassification methods revealed that serum sTfR significantly added the prognostic value to the baseline prognostic model, and to the greater extent than plasma NT‐proBNP. Based on internal derivation and validation procedures, serum sTfR ≥1.41 mg/L was the optimal threshold for predicting 3‐year mortality, independent of other established variables. Conclusions: High serum sTfR accurately reflects depleted iron stores in bone marrow in patients with HF, and identifies those with a high 3‐year mortality

    PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    Get PDF
    Background: Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results: Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions: This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells

    Numerical investigation of a GTM-140 turbojet engine

    No full text
    The paper presents three-dimensional numerical simulations of combustion in the GTM-140 miniature turbine engine. The main aim of the work is to understand the processes occurring in the combustion chamber. The coupling of chemical kinetics, thermochemistry, transport of mass, energy and momentum, and fluid mechanics is a challenge for the engineers. The knowledge of these issues is essential to achieve a high performance product. The k- ϵ (RANS) Turbulence Model and Non-Premixed Model for the combustion was used. The particles of fluid droplets were described by the Discrete Phase Model

    A case study of working fluid selection for a small-scale waste heat recovery ORC system

    No full text
    The paper illustrates a case study of fluid selection for an internal combustion engine heat recovery organic Rankine cycle (ORC) system having the net power of about 30 kW. Various criteria of fluid selection are discussed. Particular attention is paid to thermodynamic performance of the system and human safety. The selection of working fluid for the ORC system has a large impact on the next steps of the design process, i.e., the working substance affects the turbine design and the size and type of heat exchangers. The final choice is usually a compromise between thermodynamic performance, safety and impact on natural environment. The most important parameters in thermodynamic analysis include calculations of net generated power and ORC cycle efficiency. Some level of toxicity and flammability can be accepted only if the leakages are very low. The fluid thermal stability level has to be taken into account too. The economy is a key aspect from the commercial point of view and that includes not only the fluid cost but also other costs which are the consequence of particular fluid selection. The paper discusses various configurations of the ORC system – with and without a regenerator and with direct or indirect evaporation. The selected working fluids for the considered particular power plant include toluene, DMC (dimethyl carbonate) and MM (hexamethyldisiloxane). Their advantages and disadvantages are outlined

    COMBINATIONS OF ISOTHIOCYANATES WITH DRUGS – A CHANCE OR THREAT TO CHEMOPREVENTION AND CANCER TREATMENT?

    No full text
    Isothiocyanates (ITCs) are a group of compounds of natural origin which exhibit anticancer properties. In addition to the cytotoxic impact on cancer cells, confirmed in the multiple cell lines and the in vivo models, ITCs exhibit the cytoprotective effect in normal cells by regulating the activity of enzymes involved in xenobiotic metabolism. These properties of ITCs have led to a continuing increase in the number of studies which have shown that ITCs can sensitize cancer cells to cytostatic drugs used as standard in cancer therapies. On the other hand these compounds may decrease the effectiveness of drugs by deregulating the metabolising system of the cell. This paper discusses the results of preclinical study on ITCs applications in combination therapy as well as their role in drug metabolism

    Design and numerical study of turbines operating with MDM as working fluid

    No full text
    Design processes and numerical simulations have been presented for a few cases of turbines designated to work in ORC systems. The chosen working fluid isMDM. The considered design configurations include single stage centripetal reaction and centrifugal impulse turbines as well as multistage axial turbines. The power outputs vary from about 75 kW to 1 MW. The flow in single stage turbines is supersonic and requires special design of blades. The internal efficiencies of these configurations exceed 80% which is considered high for these type of machines. The efficiency of axial turbines exceed 90%. Possible turbine optimization directions have been also outlined in the work
    corecore