375 research outputs found
Ultrasound imaging of the carpal tunnel during median nerve compression
Median nerve (MN) compression is a recognized component of carpal tunnel syndrome (CTS). In order to document compressive changes in the MN during hand activity, the carpal tunnel was imaged with neuromuscular ultrasound (NMUS). Ten patients with CTS and five normal controls underwent NMUS of the MN at rest and during dynamic stress testing (DST). DST maneuvers involve sustained isometric flexion of the distal phalanges of the first three digits. During DST in the CTS patients, NMUS demonstrated MN compression between the contracting thenar muscles ventrally and the taut flexor tendons dorsally. The mean MN diameter decreased nearly 40%, with focal narrowing in the mid-distal carpal canal. Normal controls demonstrated no MN compression and a tendency towards MN enlargement, with an average diameter increase of 17%. Observing the pathologic mechanism of MN injury during common prehensile hand movements could help better understand how to treat and prevent CTS
Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields
The stability of matter composed of electrons and static nuclei is
investigated for a relativistic dynamics for the electrons given by a suitably
projected Dirac operator and with Coulomb interactions. In addition there is an
arbitrary classical magnetic field of finite energy. Despite the previously
known facts that ordinary nonrelativistic matter with magnetic fields, or
relativistic matter without magnetic fields is already unstable when the fine
structure constant, is too large it is noteworthy that the combination of the
two is still stable provided the projection onto the positive energy states of
the Dirac operator, which defines the electron, is chosen properly. A good
choice is to include the magnetic field in the definition. A bad choice, which
always leads to instability, is the usual one in which the positive energy
states are defined by the free Dirac operator. Both assertions are proved here.Comment: LaTeX fil
Long Range Forces from Pseudoscalar Exchange
Using dispersion theoretic techniques, we consider coherent long range forces
arising from double pseudoscalar exchange among fermions. We find that Yukawa
type coupling leads to spin independent attractive potentials whereas
derivative coupling renders spin independent repulsive potentials.Comment: 27 pages, REVTeX, 3 figures included using epsfi
Ionization Potential of the Helium Atom
Ground state ionization potential of the He^4 atom is evaluated to be 5 945
204 221 (42) MHz. Along with lower order contributions, this result includes
all effects of the relative orders alpha^4, alpha^3*m_e/m_alpha and
alpha^5*ln^2(alpha).Comment: 4 page
On the validity of the reduced Salpeter equation
We adapt a general method to solve both the full and reduced Salpeter
equations and systematically explore the conditions under which these two
equations give equivalent results in meson dynamics. The effects of constituent
mass, angular momentum state, type of interaction, and the nature of
confinement are all considered in an effort to clearly delineate the range of
validity of the reduced Salpeter approximations. We find that for
the solutions are strikingly similar for all
constituent masses. For zero angular momentum states the full and reduced
Salpeter equations give different results for small quark mass especially with
a large additive constant coordinate space potential. We also show that
corrections to heavy-light energy levels can be accurately
computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures
included. Slightly revised version, to appear in Phys. Rev.
Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: a randomized clinical trial
High-protein diet is a promising strategy for diabetes treatment supporting body weight control, improving glycaemic status, cardiovascular risk factors and reducing liver fat. Here, we investigated effects of diets high in animal (AP) or plant (PP) protein on oxidative stress and antioxidant status in individuals with type 2 diabetes (T2DM). 37 obese individuals (age 64.3 ± 1.0 years) with T2DM were randomized to an isocaloric diet (30 energy(E)% protein, 30E% fat and 40E% carbohydrates) rich in AP or PP for 6 weeks. Markers of oxidative and nitrosative stress and antioxidant status in plasma and nitrate/nitrite levels in urine were assessed. Gene expression in subcutaneous adipose tissue (SAT) was analyzed by RNA-Seq and real-time PCR.Both AP and PP diets similarly reduced plasma levels of malondialdehyde (P(AP) = 0.003, P(PP) = 1.6x10(-4)) and protein carbonyls (P(AP) = 1.2x10(-4), P(PP) = 3.0x10(-5)) over 6 weeks. Nitrotyrosine (NT) increased upon both AP and PP diets (PAP = 0.005,PPP = 0.004). SAT expression of genes involved in nitric oxide (NO) and oxidative stress metabolism and urine NO metabolite (nitrate/nitrite) levels were not changed upon both diets. Plasma levels of carotenoids increased upon PP diet, whereas retinol, alpha- and gamma-tocopherol slightly decreased upon both diets. AP and PP diets similarly improve oxidative stress but increase nitrosative stress markers in individuals with T2DM. Mechanisms of the NT regulation upon high-protein diets need further investigation
RPA-Approach to the Excitations of the Nucleon, Part II: Phenomenology
The tensor-RPA approach developed previously in part I is applied to the
Nambu-Jona-Lasinio (NJL) model. As a first step we investigate the structure of
Dirac-Hartree-Fock solutions for a rotationally and isospin invariant
ground-state density. Whereas vacuum properties can be reproduced, no solitonic
configuration for a system with unit baryon number is found. We then solve the
tensor-RPA equation employing simple models of the nucleon ground state. In
general the ph interaction effects a decrease of the excited states to lower
energies. Due to an enhanced level density at low energies the obtained spectra
cannot be matched with the experimental data when a standard MIT-bag
configuration is used. However, when the size of the nucleon quark core is
reduced to approximately 0.3 fm a fair description of the baryon spectrum in
the positive-parity channel is achieved. For this purpose the residual
interaction turns out to be crucial and leads to a significant improvement
compared with the mean-field spectra.Comment: 33 pages, Latex, 9 Postscpript figures, section on the excited states
has been completely rewritten after error was detected, results are now much
more encouragin
The Standard Model in Strong Fields: Electroweak Radiative Corrections for Highly Charged Ions
Electroweak radiative corrections to the matrix elements are calculated for highly charged hydrogenlike ions. These
matrix elements constitute the basis for the description of the most parity
nonconserving (PNC) processes in atomic physics. The operator
represents the parity nonconserving relativistic effective atomic Hamiltonian
at the tree level. The deviation of these calculations from the calculations
valid for the momentum transfer demonstrates the effect of the strong
field, characterized by the momentum transfer ( is the
electron mass). This allows for a test of the Standard Model in the presence of
strong fields in experiments with highly charged ions.Comment: 27 LaTex page
Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law
The exchange of light pseudoscalars between fermions leads to a
spin-independent potential in order g^4, where g is the Yukawa
pseudoscalar-fermion coupling constant. This potential gives rise to detectable
violations of both the weak equivalence principle (WEP) and the gravitational
inverse-square law (ISL), even if g is quite small. We show that when
previously derived WEP constraints are combined with those arisingfrom ISL
tests, a direct experimental limit on the Yukawa coupling of light
pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6
\times 10^-7), along with a new (and significantly improved) limit on the
coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical
Review Letters
Quantum Electrodynamics of the Helium Atom
Using singlet S states of the helium atom as an example, I describe precise
calculation of energy levels in few-electron atoms. In particular, a complete
set of effective operators is derived which generates O(m*alpha^6) relativistic
and radiative corrections to the Schr"odinger energy. Average values of these
operators can be calculated using a variational Schr"odinger wave function.Comment: 23 pages, revte
- …