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A B S T R A C T

High-protein diet is a promising strategy for diabetes treatment supporting body weight control, improving
glycaemic status, cardiovascular risk factors and reducing liver fat. Here, we investigated effects of diets high in
animal (AP) or plant (PP) protein on oxidative stress and antioxidant status in individuals with type 2 diabetes
(T2DM). 37 obese individuals (age 64.3 ± 1.0 years) with T2DM were randomized to an isocaloric diet (30
energy(E)% protein, 30 E% fat and 40 E% carbohydrates) rich in AP or PP for 6 weeks. Markers of oxidative and
nitrosative stress and antioxidant status in plasma and nitrate/nitrite levels in urine were assessed. Gene ex-
pression in subcutaneous adipose tissue (SAT) was analysed by RNA-Seq and real-time PCR. Both AP and PP diets
similarly reduced plasma levels of malondialdehyde (PAP = 0.003, PPP = 1.6 × 10−4) and protein carbonyls
(PAP = 1.2 × 10−4, PPP = 3.0 × 10−5) over 6 weeks. Nitrotyrosine (NT) increased upon both AP and PP diets
(PAP = 0.005, PPP = 0.004). SAT expression of genes involved in nitric oxide (NO) and oxidative stress me-
tabolism and urine NO metabolite (nitrate/nitrite) levels were not changed upon both diets. Plasma levels of
carotenoids increased upon PP diet, whereas retinol, alpha- and gamma-tocopherol slightly decreased upon both
diets. AP and PP diets similarly improve oxidative stress but increase nitrosative stress markers in individuals
with T2DM. Mechanisms of the NT regulation upon high-protein diets need further investigation.

1. Introduction

Nutritional strategies have been shown to be highly effective to
improve metabolic control in individuals with type 2 diabetes (T2DM),
but there are controversies regarding the question which dietary com-
position is more efficacious. We and others already showed that high-
protein diets effectively support weight loss and weight maintenance
[1] due to increased satiety and postprandial thermogenesis. Although
epidemiological studies demonstrate association of high intake of red

meat and animal protein in general with increased risk of T2DM [2],
clinical studies with T2DM patients observed strong improvement of
glycaemic control and reduction of HbA1c after both animal and plant
protein diets [3–5]. High-protein diets also potently reduce liver fat,
improve blood lipid profile, and decrease blood pressure [3,6,7], sug-
gesting that high-protein diet is a promising strategy for diabetes pre-
vention and treatment. However, there are limited data on the effects of
high-protein diets on the oxidative and nitrosative stress in humans
[8,9].
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T2DM is characterized by the elevated oxidative and nitrosative
stress which result from overproduction and/or decreased elimination
of reactive oxygen species (ROS) and reactive nitrogen species (RNS)
and are linked to the development of insulin resistance, cardiovascular
complications, and chronic low-grade inflammation [10,11]. Various
causative factors are suggested to contribute to the increased genera-
tion of ROS and RNS in T2DM including hyperglycemia, FFA elevation,
and overnutrition caused by excess high-fat and/or carbohydrate diets
[10,12]. Enhanced ROS production stimulates lipid peroxidation and
protein carboxylation leading to the dysfunction of multiple cellular
components and metabolic pathways [12]. Hyperglycemia also induces
increased nitric oxide (NO) production [13], which interacts with ROS
to generate peroxynitrite (ONOO−) inducing nitrosative stress and
disrupting cellular signaling and metabolism [11]. Overall, enhanced
oxidative damage is one of major mechanisms of glucose toxicity in
T2DM and its related micro- and macrovascular complications.

As mentioned above, nutrient composition and calorie intake could
have a large effect on the redox status, strongly affecting levels of pro-
and antioxidant factors in plasma [14]. In particular, Kitabchi et al.
found that a hypocaloric high-protein diet more effectively reduce ROS
levels and lipid peroxidation in comparison with a high-carbohydrate
diet accompanied by stronger improvement of insulin sensitivity, car-
diovascular risk factors and inflammatory cytokines [8]. Whether
dietary protein of animal or plant origin can differently modulate oxi-
dative stress and antioxidant status still remains to be elucidated. We
therefore compared effects of isocaloric diets high in animal or plant
protein in individuals with T2DM in a 6-week randomized clinical trial.

2. Materials and methods

2.1. Study design and dietary intervention

Individuals with diagnosed T2DM and HbA1c ≥ 6% were included
in this randomized open-label, parallel-arm clinical trial. Study design
was approved by the Ethics Committee of the University of Potsdam,
conducted in accordance with the Declaration of Helsinki, and regis-
tered at www.ClinicalTrials.gov (NCT02402985). All participants pro-
vided written informed consent before starting the study. Details of the
study design, inclusion and exclusion criteria as well as dietary inter-
vention were published previously [3,6].

In brief, 44 individuals with type 2 diabetes were assigned to a high
protein diet from either plant (PP) or animal (AP) origin; randomizing
parameters were age, sex, BMI, HbA1c level, and oral medication.
Macronutrient intake of individuals prior to enrollment was 17 E%
protein, 42 E% carbohydrates (CHO), 41 E% fat. 37 subjects (nAP= 18,
nPP = 19) in age of 64.3 ± 1.0 years completed the study (Fig. S1).
Both diets were isocaloric and had the same macronutrient composition
(30 E% protein, 40 E% CHO, 30 E% fat consistent of 10 E% saturated,
10 E% monounsaturated, 10 E% polyunsaturated fatty acids) (Table 1).
The animal-protein diet (AP) was rich in meat and dairy foods, the
plant-protein diet (PP) consisted mainly of pea protein. In order to
achieve good compliance, maximal amount of AP in the PP diet was
around 28%; PP content in the AP diet was limited to 20% of protein
intake. Study participants received individual isocaloric food plans
created based on the individual basal metabolic rate, total energy ex-
penditure and individual preferences as described previously [3,6].
Participants were advised to weigh and document all foods they had
eaten including aberrations from the food plans. Analysis of food plans

Abbreviations

AP Animal protein
CID Clinical investigation day
E% Per cent of energy
FFA Free fatty acids
HOMA-IR Homeostasis model assessment of insulin resistance
MDA Malondialdehyde
MUFA Monounsaturated fatty acids
NEFA Non-esterified fatty acids

NO Nitric oxide
NT Nitrotyrosine
PP Plant protein
PUFA Polyunsaturated fatty acids
RNS Reactive nitrogen species
ROS Reactive oxygen species
SFA Saturated fatty acids
TBA thiobarbituric acid
T2DM Type 2 diabetes mellitus

Table 1
Dietary intake of macronutrients and vitamins.

Variables AP PP

Week 0 Week 6 Week 0 Week 6

Energy (kJ/day) 9525.2 ± 421.2 10458.3 ± 378.5* 9136.0 ± 482.4 9784.2 ± 466.0*
Protein (E%) 17.6 ± 0.7 29.5 ± 0.2** 16.4 ± 0.6## 29.9 ± 0.2**

(g) 96.1 ± 6.3 178.3 ± 6.0** 81.8 ± 4.6 169.1 ± 8.4**
Plant protein (%) 19.8 ± 0.3 72.3 ± 0.9##

Animal protein (%) 80.2 ± 0.3 27.7 ± 0.9##

Carbohydrates (E%) 41.3 ± 1.3 40.5 ± 0.2** 43.3 ± 1.4## 39.3 ± 0.3**##

(g) 222.9 ± 9.8 244.6 ± 8.2** 214.3 ± 10.0 222.3 ± 11.2
Fat (E%) 41.1 ± 1.2 30.1 ± 0.2** 40.3 ± 1.2## 30.9 ± 0.4**

(g) 102.5 ± 7.0 81.9 ± 2.4** 91.7 ± 5.2 78.3 ± 3.3*
SFA (g) 42.8 ± 3.2 27.63 ± 0.92** 37.6 ± 2.3 24.08 ± 1.05**#

MUFA (g) 15.6 ± 1.4 25.18 ± 0.85** 14.7 ± 1.2 23.88 ± 1.10**
PUFA (g) 36.9 ± 2.7 23.66 ± 1.14** 33.0 ± 2.3 23.38 ± 1.06**

54.5 ± 0.4 55.7 ± 1.3
Dietary fibre (g) 25.5 ± 2.0 35.36 ± 1.42** 26.3 ± 1.6 33.27 ± 1.78**
Retinol (μg) 1123.4 ± 212.1 378.4 ± 18.4** 1162.9 ± 571.2 372.7 ± 35.1**
Beta-carotene (μg) 5818.2 ± 1668.6 9460 ± 641** 5198.9 ± 793.1 14190 ± 1063**##

Vitamin E (mg) 11.9 ± 1.0 21.3 ± 0.8** 14.0 ± 1.2 21.3 ± 1.2**
Vitamin C (mg) 142.4 ± 22.3 276.8 ± 13.6** 194.9 ± 25.8 258.3 ± 20.0**

Values are means ± SEM. nAP = 18, nPP = 19. *p < 0.05, **p < 0.01 week 6 vs. week 0; #p < 0.05, ##p < 0.01 AP vs. PP at week 0 or at week 6.
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was performed with PRODI® 6.2 (Nutri-Science GmbH, Hausach, Ger-
many) which included the Bundeslebensmittelschlüssel (BLS), version
3.01. Glycemic index and fiber content was similar in both groups.
Participants were asked to maintain their physical activity patterns for
the duration of the study.

At the beginning and end of interventions, hyperinsulinemic eu-
glycemic clamps were performed after overnight fast as described [3,6].
In the hyperinsulinaemic–euglycaemic clamp, whole-body insulin sen-
sitivity (M-value, insulin-mediated glucose uptake per kg body weight)
was determined by at a constant insulin infusion rate of 40 mU/kg/min.

2.2. Body composition

Body composition was determined by air displacement plethysmo-
graphy (BOD POD; Cosmed, Rome, Italy).

2.3. Biomarker analysis

Blood was collected at week 0, 2, 4, and 6 of the intervention after
overnight fast. Blood samples were immediately chilled and cen-
trifuged, and the supernatant was stored at −80 °C until analysed.
Routine laboratory markers were measured by using standard methods
(ABX Pentra 400, ABX Diagnostics, Montpellier, France). ELISAs were
performed to determine serum levels of insulin (Mercodia, Uppsala,
Sweden), adiponectin (R&D Systems, Minneapolis, MN), and IL-6
(Merck Sharp & Dohme, Kenilworth, NJ). Tumor necrosis factor alpha
(TNFα) was measured using Luminex magnetic bead technology (R&D
Systems, Minneapolis, MN). Index of whole-body insulin resistance
(HOMA-IR) was calculated as: fasting insulin [μU/mL] x fasting glucose
in [mM]/22.5.

Malondialdehyde (MDA) was measured in plasma samples before
and 180 min after each MTT as a marker of lipid peroxidation after
derivatization with thiobarbituric acid (TBA) and separation by reverse-
phase HPLC coupled with fluorescence detection (free MDA as stan-
dard) as described [15,16]. The analyses of nitrotyrosine, protein car-
bonyls [16] and micronutrients [17] in plasma has been described in
detail elsewhere.

Plasma amino acid levels were determined by liquid chromato-
graphy tandem mass spectrometry analysis as described recently [6].
Nitrate and nitrite levels in 24-h urine samples were determined using
Nitrate/Nitrite Colorimetric Assay Kit (Cayman Chemical, Ann Arbor,

MI).

2.4. Gene expression analysis of adipose tissue

Subcutaneous adipose tissue (SAT) samples were obtained from 27
subjects by fine-needle biopsy before and after 6 weeks of dietary in-
tervention. Samples were flash-frozen in liquid nitrogen and stored at
−80 °C until analysis.

For the gene expression analysis by qPCR, total RNA was purified
from SAT samples using the miRNeasy Lipid Tissue Mini Kit (Qiagen,
Germany). RNA concentration was measured using an ND-1000 spec-
trophotometer (Nanodrop, PeqLab). Single-stranded cDNA was syn-
thesized with miScript II RT Kit (Qiagen, Germany). QPCR was per-
formed by ViiA 7 sequence detection system using Power SYBR Green
PCR Master Mix (Applied Biosystems, USA) and specific primers. Gene
expression was assessed by the standard curve method and normalized
to the reference gene beta-glucuronidase (GUSB). Primer sequences are
shown in Table S1.

For mRNA-sequencing, mRNA was performed using the stranded
mRNA library preparation kit from New England Biolabs. Paired-end
sequencing of 75 nt was performed using an Illumina HiSeq 4000 se-
quencer. The reads were mapped using bowtie v.2.3.2 [18] and GEN-
CODE human reference genome (GRCh38. p10). Once reads were
mapped, they were counted using RSEM v. 1.3 software [19]. The
differential expression of mRNA isoforms was evaluated with DESeq2
using the paired experimental design (p-value ≤ 0.05) [20]. The
transcript annotation of the mRNA isoforms was retrieved from the
BioMart database [21] and functional annotation was done using
ConsensusPathDB [22]. The transcriptome data can be found under EBI
Annotare v.2.0 (Project-ID: E-MTAB-8549).

2.5. Statistical analysis

Data are presented as the mean ± SEM. Statistical significance was
defined as p < 0.05. Non-normaly distributed variables were trans-
formed with the natural logarithm and re-assessed for normality.
Comparisons between two groups were tested by Student's t-test (paired
and unpaired) or non-parametric tests (Wilcoxon and Mann-Whitney-U-
Test). Repeated measures ANOVA was used for comparisons within and
between dietary groups. Depending on data distribution, Pearson's
coefficient or Spearman's rank correlation coefficient was used for

Table 2
Characteristics of the study subjects.

Parameter AP PP AP versus PP

week 0 week 6 pAP week 0 week 6 pPP pAPvsPP

Age (years) 65.0 ± 1.4 63.7 ± 1.5
Body mass index (kg/m2) 31.0 ± 0.8 30.2 ± 0.7 1.4*10−4 29.4 ± 1.0 28.9 ± 1.0 0.005 0.088
Fat mass [%] 35.26 ± 2.19 33.36 ± 1.94 0.023 34.95 ± 2.30 33.55 ± 2.20 0.107 0.473
Fasting insulin (mU/l) 10.07 ± 1.69 8.31 ± 1.27 0.701 8.74 ± 1.32 9.12 ± 1.72 1.000 0.869
Fasting glucose (mmol/l) 9.64 ± 0.43 8.61 ± 0.36 0.043 9.48 ± 0.35 9.35 ± 0.50 0.242 0.138
HOMA-IR 4.45 ± 0.87 3.15 ± 0.49 0.183 3.82 ± 0.53 3.67 ± 0.61 0.494 0.767
HbA1c (%) 6.98 ± 0.21 6.54 ± 0.19 0.387 6.98 ± 0.14 6.42 ± 0.14 1.4*10−5 0.578
M-value (mg/min/kg) 4.93 ± 0.39 5.73 ± 0.43 0.006 4.98 ± 0.58 5.44 ± 0.41 0.229 0.764
Cholesterol (mmol/l) 5.16 ± 0.27 4.35 ± 0.26 0.021 5.24 ± 0.16 4.64 ± 0.18 0.039 0.883
LDL cholesterol (mmol/l) 3.25 ± 0.22 2.72 ± 0.22 0.019 3.40 ± 0.17 3.01 ± 0.17 0.001 0.638
HDL cholesterol (mmol/l) 1.13 ± 0.07 0.95 ± 0.05 0.003 1.09 ± 0.05 0.93 ± 0.03 0.002 0.111
Triglycerides (mmol/l) 1.72 ± 0.13 1.48 ± 0.14 0.182 1.64 ± 0.14 1.55 ± 0.15 1.000 0.106
Non-esterified free fatty acids (mmol/l) 0.67 ± 0.04 0.64 ± 0.05 1.000 0.73 ± 0.04 0.61 ± 0.04 0.016 0.425
C-reactive protein (mg/L) 2.17 ± 0.56 1.23 ± 0.33 0.031 2.09 ± 0.50 1.79 ± 0.40 1.000 0.836
IL-6 (pg/mL) 1.15 ± 0.25 0.89 ± 0.18 0.166 1.42 ± 0.32 1.40 ± 0.34 0.816 0.322
TNFα (pg/mL) 4.31 ± 0.68 4.37 ± 0.51 0.925 4.52 ± 0.60 3.76 ± 0.56 0.016 0.213
Urine nitrate/nitrite (μmol/l) 292.7 ± 65.8 423.8 ± 81.2 0.168 308.3 ± 66.0 246.8 ± 32.0 0.222 0.070

Values are means ± SEM. M-value obtained from hyperinsulinaemic–euglycaemic clamp was used for the assessment of the whole-body insulin sensitivity. Data
were analysed with ANOVA repeated measures for each intervention group as well as for comparison between the groups (AP versus PP). Percentage weight change
was used as a covariate in the model if significant interaction was found between the weight change and change in the parameter.
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correlation analysis. All statistical analyses were performed with SPSS
20.0 (Chicago, USA).

3. Results

3.1. Clinical characteristics of participants

A total of 37 participants completed the intervention (AP n = 18,
PP n = 19). Subjects were 65.0 ± 1.4 (AP) years old and 63.7 ± 1.5
(PP) years old, moderately obese with BMI of 31.0 ± 0.8 kg/m2 (AP)
and 29.4 ± 1.0 kg/m2 (PP) and with well controlled HbA1c (at ~7.0%
in both groups). Both AP and PP diet induced slight decrease of BMI
(AP: −2.6%; PP: −1.7%) and fat mass (AP: −1.9%; PP: −1.4%)
without difference between the groups (Table 2). After 6 weeks of in-
tervention, high-protein diet markedly improved glycemic control, i.e.
decreased HbA1c in both groups and fasting glucose and whole-body
insulin sensitivity in the AP group (Table 2). Blood lipids, i.e. total
cholesterol, HDL and LDL cholesterol, were reduced in both groups,
whereas NEFA decreased significantly only in the PP group. In-
flammatory marker C-reactive protein (CRP) decreased upon AP diet,
whereas TNFα decreased in the PP group (Table 2).

3.2. Oxidative and nitrosative stress markers

To investigate effects of high-protein diet on the oxidative stress,
plasma levels of MDA and protein carbonyls were measured. In com-
parison with baseline, MDA levels was decreased after 2 and 4 weeks in
the AP group and after 2, 4, and 6 weeks in the PP group without
significant difference between groups (PAP = 0.003, PPP = 1.6 × 10−4,
PAPvsPP = 0.469) (Fig. 1A). Protein carbonyls were strongly reduced
after 4 and 6 weeks of both AP and PP diet (PAP = 1.2 × 10−4,
PPP = 3.0 × 10−5, PAPvsPP = 0.745) (Fig. 1B). However, levels of ni-
trotyrosine (NT) often used as a nitrosative stress marker in observa-
tional studies [23] increased upon both AP and PP diets (PAP = 0.005,
PPP = 0.004, PAPvsPP = 0.217) (Fig. 1C). Interestingly, dietary-induced
changes of plasma MDA and NT from week 0 to week 6 correlated with

the changes of fasting insulin (MDA: r = −0.335; P = 0.046; NT:
r = −0.429; P = 0.009) (Fig. 1D) and HOMA-IR (MDA: r = −0.329;
P = 0.050; NT: r = −0.436; P = 0.008), but not with changes of
weight, fasting glucose, whole-body insulin sensitivity (M-value in
clamps), NEFA, adiponectin, IL-6, TNFα, and iron. Further, changes of
NT and HbA1c correlated inversely (r = −0.336; P = 0.041). Dietary-
induced changes of protein carbonyls showed no associations with the
above mentioned markers.

3.3. Dietary arginine intake and plasma levels

A recent study showed an association of high intake of the amino
acid arginine with oxidative stress [9]. We hypothesized that a high
arginine intake, which is also a precursor of nitric oxide (NO) might
increase the production of peroxynitrite and NT synthesis. Indeed, in
the present study, arginine intake was approximately 2-fold higher in
both groups compared with baseline levels and not significantly dif-
ferent between diets (Table S2). However, arginine intake did not
correlate with NT levels at week 6. Fasting plasma levels of arginine
showed no difference between weeks 0 ad 6 and between diets (Table
S3).

3.4. Expression of genes related to NO metabolism and oxidative stress
pathways

We additionally analysed whether expression of enzymes involved
in arginine/NO metabolism – arginase (Arg1), inducible NOS (iNOS),
and endothelial NOS (eNOS) was affected by high-protein diets.
However, mRNA expression levels in SAT showed no changes of these
genes upon both diets (Fig. S2).

To gain further insight into the molecular mechanisms underlying
metabolic changes upon high-protein diet, RNA-seq analysis of SAT
samples was performed at baseline and after 6 weeks of intervention
(n = 12 in the AP group and n = 15 in the PP group). In the AP group,
37 genes showed dietary induced expression changes, with 19 tran-
scripts being upregulated and 18 being downregulated at week 6 in

Fig. 1. Effects of animal and plant pro-
tein diets on oxidative and nitrosative
stress markers. Levels of (A) mal-
ondialdehyde (MDA); (B) protein carbonyls;
(C) nitrotyrosine over 6 weeks of interven-
tion. Values are means ± SEM.
*p < 0.05, **p < 0.01 for AP vs. PP
group; #p < 0.05, # #p < 0.01 vs. week 0
in the AP group; §p < 0.05, §§p < 0.01 vs.
week 0 in the PP group. (D) Correlation
between the relative change in MDA and
nitrotyrosine (NT) from week 0 to week 6
with the relative change in fasting insulin.
Black circles: AP group, white circles: PP
group.
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comparison with baseline (Table S4). Functional analysis revealed that
these genes are involved in response to hyperoxia, cellular response to
external stimulus, and protein metabolic processes. Further, translation,
fatty acid biosynthesis, SREBP, and PPAR signaling were affected
(Table 3), which is in agreement with previously published data [6]. We
validated expression of two genes belonging to hyperoxia response
pathway using qPCR: Fas cell surface death receptor (FAS) and elastin
(ELN). PCR analysis confirmed a tendency to the upregulation of FAS
and downregulation of ELN upon AP diet, but the changes did not reach
statistical significance (Fig. S2). In the PP group, no transcripts showed
dietary induced expression changes.

3.5. Nitrate/nitrite levels in urine

We further investigated the levels of NO metabolites excreted in
urine by the measurement of nitrate/nitrite concentrations in 24 h
urine samples as described [24]. No significant changes of urine ni-
trate/nitrite levels after 6 weeks of AP or PP intervention compared to
baseline and no difference between groups were found (Table 2) with
high interindividual variability of AP effects (Fig. S3). Similar results
were obtained after the normalization to urinary creatinine levels (data
not shown).

3.6. Antioxidant vitamins and carotenoids

We finally analysed plasma levels of antioxidant vitamins and car-
otenoids, which might contribute to observed changes of oxidative
stress markers. Levels of alpha-carotene dramatically increased upon PP
diet, whereas AP group showed minor increase over 6 weeks
(PAP = 0.013, PPP = 7.1 × 10−12, PAPvsPP = 4.0 × 10−8) (Fig. 2A).
Beta-carotene levels showed similar changes (PAP = 0.046,
PPP = 5.8 × 10−8, PAPvsPP = 0.013) (Fig. 2B). PP, but not AP, also
slightly increased lutein/zeaxanthin levels without difference between
diets (PAP = 0.109, PPP = 0.044, PAPvsPP = 0.820) (Fig. 2C). Beta-
cryproxanthin and lycopene showed no dietary-induced changes (data
not shown). However, both AP and PP diets resulted in reduction of
plasma retinol (PAP = 4.5 × 10−5, PPP = 7.1 × 10−7,
PAPvsPP = 0.726) (Fig. 2D) and alpha-tocopherol levels
(PAP = 1.1 × 10−5, PPP = 4.6 × 10−7, PAPvsPP = 0.834) (Fig. 2E).
Gamma-tocopherol levels also decreased upon AP diet, but not in the PP
group (PAP = 0.004, PPP = 0.602, PAPvsPP = 0.407) (Fig. 2F). No de-
crease of plasma tocopherols was found after the normalization with

regard to triglyceride levels (Fig. S4).
We hypothesized that differences in plasma antioxidant levels might

be explained by the dietary micronutrient intake. Indeed, PP diet pro-
vided 1.5-fold more beta-carotene than AP diet (p = 5.0 × 10−4),
although consumption of beta-carotene upon both diets was higher
than at baseline (Table 1). Dietary intake of retinol decreased, whereas
alpha-tocopherol and vitamin C intake similarly increased upon both
diets (Table 1).

4. Discussion

In this study, we compared effects of diets high in animal or plant
protein on markers of oxidative stress and antioxidant status in subjects
with T2DM for the first time. We found that both AP and PP diets si-
milarly reduced levels of MDA and protein carbonyls over 6 weeks of
intervention, accompanied by a marked improvements of glycemic
control, decrease of blood lipids, blood pressure, and inflammatory
cytokines [3,6]. However, plasma NT increases upon both diets. No-
tably, dietary-induced changes of plasma MDA and NT were associated
with changes of fasting insulin, HOMA-IR, and HbA1c, suggesting an
important role of oxidative damage in the regulation of beta-cell
function and insulin resistance via multiple mechanisms [10,11].

Our data on MDA and protein carbonyls are in agreement with a
study described by Kitabchi et al. who showed a stronger reduction of
ROS levels and MDA and larger improvement of insulin sensitivity,
cardiovascular risk factors upon hypocaloric diet rich in animal protein
in comparison with a high-carbohydrate diet [8]. Nevertheless, litera-
ture data concerning effects of animal and plant protein are very con-
tradictory. In particular, high meat consumption, especially red and
processed meat, typical for Western-type diets, lead to an elevated
production of ROS [25,26], which is associated with an increased risk
of T2DM, insulin resistance, and other cardiometabolic dysfunctions as
shown in epidemiological studies [27]. In contrast, replacement of red
meat with soy protein reduced plasma MDA and increased plasma total
antioxidant capacity [28], although beneficial effects of plant proteins
were not confirmed by another group [29].

Amino acid composition of dietary protein is suggested to strongly
affect its metabolic effects [30]. PP usually contains lower levels of the
branched chain amino acids and methionine as compared with AP [31],
being also a result in the present study. In accordance with epidemio-
logical studies on red meat intake, a high-methionine diet in rats
showed an increased level of MDA and NT in the liver [32]. In our

Table 3
Functional annotation of genes affected by AP diet.

Go term p-value q-value
Biological processes
GO:0055093 response to hyperoxia 0.0012 0.1004
GO:0071496 cellular response to external stimulus 0.0016 0.1004
GO:0044763 single-organism cellular process 0.0052 0.2077
GO:0031668 cellular response to extracellular stimulus 0.0057 0.2017
GO:0044424 intracellular part 0.0062 0.1140
GO:0045137 development of primary sexual characteristics 0.0089 0.2017
GO:0042493 response to drug 0.0091 0.2017
GO:0019538 protein metabolic process 0.0097 0.2017
Pathways
R-HSA-418360 Platelet calcium homeostasis 0.0017 0.0540
De novo fatty acid biosynthesis De novo fatty acid biosynthesis 0.0036 0.0540
R-HSA-75105 Fatty Acyl-CoA Biosynthesis 0.0052 0.0540
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43 S complex 0.0060 0.0540
R-HSA-72649 Translation initiation complex formation 0.0075 0.0540
R-HSA-72702 Ribosomal scanning and start codon recognition 0.0075 0.0540
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43 S 0.0077 0.0540
WP3942 PPAR signaling pathway 0.0087 0.0540
WP1982 Sterol Regulatory Element-Binding Proteins (SREBP) signaling 0.0087 0.0540
path:hsa 03320 PPAR signaling pathway - Homo sapiens (human) 0.0097 0.0543

Transcripts showed significant changes after a false-discovery rate correction (p < 0.05) were subjected for gene ontology and pathway analyses. Functional
annotation was done with ConsensusPathDB.
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study, AP diet was rich in white meat and dairy foods (and might be
therefore designated as casein-rich diet [30]), whereas PP diet consisted
mainly of pea protein-based food items. Unexpectedly, and despite of
difference in the amino acid composition, both diets not only similarly
reduced levels of MDA and protein carbonyls, but also similarly in-
creased plasma NT levels.

To explain the NT changes, we focussed on the metabolism of ar-
ginine, which is a main substrate of NO synthesis and its intake was
similarly 2-fold increased upon both AP and PP diet compared with
baseline. Whereas some studies showed beneficial effects of increased
arginine intake on endothelial function and insulin sensitivity via NO
production [33,34], several research groups found adverse outcomes
upon chronic arginine supplementation [35]. A recent study of Car-
valho et al. revealed an association of arginine intake with oxidative
stress marker MDA [9]. We hypothesized that high arginine intake
might increase a NO production and synthesis of peroxynitrite and
corresponding tyrosine nitration. Although fasting plasma levels of ar-
ginine did not differ between weeks 0 and 6, this can be explained by

rapid postprandial intake of arginine into the cells [6], following by its
decrease in circulation to the fasting levels.

Intracellularly, arginine can be used for protein synthesis or meta-
bolized by NOS to generate nitric oxide (NO*) and L-citrulline, or
cleaved by arginases to ornithine and urea [36]. We therefore in-
vestigated whether increased arginine intake upregulate enzymes in-
volved in arginine/NO metabolism – Arg1, iNOS and eNOS – and in this
way lead to the excessive NO production. PCR analysis of these en-
zymes did not reveal expression changes upon AP and PP diet at the
mRNA level. However, we cannot exclude that regulation of translation
or activity of these enzymes occur upon the high arginine intake [37].

Interestingly, RNA-Seq analysis confirmed the alterations of hy-
peroxia response pathway upon AP diet which is an absolute novel
finding concerning the effect of the high-protein diet. For two genes
involved in this pathway – FAS (death receptor associated with hy-
peroxia-induced apoptosis) and ELN (connective tissue protein regu-
lated by hyperoxia) – PCR analysis confirmed a tendency revealed by
RNA-Seq analysis. Activation of the FAS-mediated apoptosis might be

Fig. 2. Effects of animal and plant protein diets on plasma antioxidant vitamins and carotenoids. Levels of (A) alpha-carotene; (B) beta-carotene; (C) lutein/
zeaxanthin; (D) retinol; (E) alpha-tocopherol, and (F) gamma-tocopherol over 6 weeks of intervention. Values are means ± SEM. *p < 0.05, **p < 0.01 for AP vs.
PP group; #p < 0.05, # #p < 0.01 vs. week 0 in the AP group; §p < 0.05, §§p < 0.01 vs. week 0 in the PP group.
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induced by the increased NT formation 39 especially upon hypergly-
cemia characteristic for T2DM subjects 40. However, we cannot exclude
that the downregulation of ELN in SAT in our study resulted from the
minor weight loss upon high-protein diets [38].

In despite of our hypothesis about excessive NO production and
literature data [24], we did not find significant alterations of NO me-
tabolites (nitrates and nitrites) in urine upon AP or PP diets rich in
arginine. Urine nitrate/nitrite levels can also mirror the dietary intake
of nitrates and nitrites [39], which might cause the increased NT pro-
duction according to some data [40]. However, lack of the increase of
urine nitrate/nitrite levels suggests that NT increase also cannot be
explained by dietary intake of nitrates and nitrites. Interestingly, in-
dividual changes of urine NO metabolites were heterogenous, especially
in the AP group, which might result from interindividual differences in
the nitrate/nitrite intake or in the response to the arginine-rich diet.
Taken together, our data cannot explain the mechanism of the NT in-
crease upon high-protein diets which therefore needs investigation in
the future studies.

Notably, effect of different dietary proteins may relate not only to
differences in amino acid composition of the proteins per se, but also to
other dietary components, such as increased intake of fibre or phyto-
chemical antioxidants in plant food products [31]. We therefore tested
the hypothesis that plasma levels of antioxidant vitamins and car-
otenoids might contribute to changes of oxidative stress in our study.
Indeed, we found strong increases of plasma alpha- and beta-carotene
levels and lutein/zeaxanthin levels upon PP diet, which correspond to
the increased carotenoid intake upon PP diet. Similarly, decreased re-
tinol plasma levels are in agreement with its lower dietary intake
compared to the baseline which was only 40–50% of the reference
value (0.8–1.0 mg/day retinol equivalent) [41]. High intake of car-
otenoids (a precursor of vitamin A) upon PP diet was still not sufficient
to compensate a reduction of plasma retinol levels. Interestingly, alpha-
and gamma-tocopherol in plasma slightly decreased upon both diets
despite of the increased dietary intake compared to the baseline which
was 2-fold above German reference values (11–14 mg/day) [41]. This
might be explained by the decrease of fat intake and blood lipids, which
might aggravate the absorption of fat-soluble vitamins. However, this
phenomenon might be also explained by some (hidden) redox processes
consuming tocopherols. Vitamin C intake was also strongly increased
upon both diets compared to the baseline, which might be explained by
elevated fruit and vegetable consumption during dietary intervention.
Thus, dietary induced changes of plasma antioxidant vitamins cannot
explain similar improvement of oxidative stress markers in AP and PP
groups. Mechanisms of this phenomenon also need future investigation.
In particular, activity of antioxidant enzymes such as superoxide dis-
mutase, catalase, and glutathione peroxidase might be differently af-
fected by different dietary proteins [42].

5. Conclusions

In conclusion, both AP and PP diets similarly reduce oxidative stress
markers MDA and protein carbonyls, but lead to an increase of the
nitrosative stress marker NT in diabetic subjects, which were related to
changes of fasting insulin and insulin resistance. Our findings suggest
the effective use of high-protein diets for diabetes prevention and
treatment. Molecular mechanisms of oxidative stress regulation by
different dietary proteins have to be further elucidated in future studies,
focusing especially on the responsibilities of endogenous mechanisms
and exogenous dietary uptake of potential antioxidants.
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