7 research outputs found

    Myeloma cells down‐regulate adiponectin in bone marrow adipocytes via TNF‐alpha

    Get PDF
    Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor‐bone interface at later stages of disease. Myeloma cells were found to uptake BMAd‐derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd‐derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma‐suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF‐α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF‐α downregulates BMAd‐derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research

    A systems-level analysis of total-body PET data reveals complex skeletal metabolism networks in vivo

    Get PDF
    Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems

    The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent

    Get PDF
    Caloric restriction (CR) is a nutritional intervention that reduces the risk of age-related diseases in numerous species, including humans. CR's metabolic effects, including decreased fat mass and improved insulin sensitivity, play an important role in its broader health benefits. However, the extent and basis of sex differences in CR's health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young female mice. Females' resistance to fat and weight loss was associated with decreased lipolysis, lower systemic energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis compared to males. Positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) showed that peripheral glucose uptake was comparable between sexes. Instead, the sex differences in glucose homeostasis were associated with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity but higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, thereby stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis to a similar extent in both sexes. Finally, in a cohort of overweight and obese humans CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR's metabolic benefits. These findings have important implications for understanding the interplay between diet and health and for maximising the benefits of CR in humans

    Nutritional Regulation of Human Brown Adipose Tissue

    No full text
    The recent identification of brown adipose tissue in adult humans offers a new strategy to increase energy expenditure to treat obesity and associated metabolic disease. While white adipose tissue (WAT) is primarily for energy storage, brown adipose tissue (BAT) is a thermogenic organ that increases energy expenditure to generate heat. BAT is activated upon cold exposure and improves insulin sensitivity and lipid clearance, highlighting its beneficial role in metabolic health in humans. This review provides an overview of BAT physiology in conditions of overnutrition (obesity and associated metabolic disease), undernutrition and in conditions of altered fat distribution such as lipodystrophy. We review the impact of exercise, dietary macronutrients and bioactive compounds on BAT activity. Finally, we discuss the therapeutic potential of dietary manipulations or supplementation to increase energy expenditure and BAT thermogenesis. We conclude that chronic nutritional interventions may represent a useful nonpharmacological means to enhance BAT mass and activity to aid weight loss and/or improve metabolic health

    PHOSPHO1 is a skeletal regulator of insulin resistance and obesity.

    Get PDF
    BACKGROUND: The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice. RESULTS: Phospho1 CONCLUSION: We show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes

    Bone marrow adipose tissue: formation, function and regulation

    No full text
    The human body requires an uninterrupted supply of energy to maintain metabolic homeostasis and energy balance. To sustain energy balance, excess consumed calories are stored as glycogen, triglycerides and protein, allowing the body to continue to function in states of starvation and increased energy expenditure. Adipose tissue provides the largest natural store of excess calories as triglycerides and plays an important role as an endocrine organ in energy homeostasis and beyond. This short review is intended to detail the current knowledge of the formation and role of bone marrow adipose tissue (MAT), a largely ignored adipose depot, focussing on the role of MAT as an endocrine organ and highlighting the pharmacological agents that regulate MAT
    corecore