564 research outputs found

    A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Get PDF
    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same time scale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer time scale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non hydrodynamic fields.Comment: 17 pages, 3 figures, submitted to Physica

    Nanoflows through disordered media: a joint Lattice Boltzmann and Molecular Dynamics investigation

    Full text link
    We investigate nanoflows through dilute disordered media by means of joint lattice Boltzmann (LB) and molecular dynamics (MD) simulations -- when the size of the obstacles is comparable to the size of the flowing particles -- for randomly located spheres and for a correlated particle-gel. In both cases at sufficiently low solid fraction, Φ<0.01\Phi<0.01, LB and MD provide similar values of the permeability. However, for Φ>0.01\Phi > 0.01, MD shows that molecular size effects lead to a decrease of the permeability, as compared to the Navier-Stokes predictions. For gels, the simulations highlights a surplus of permeability, which can be accommodated within a rescaling of the effective radius of the gel monomers.Comment: 4 pages, 4 figure

    Mesoscopic modeling of heterogeneous boundary conditions for microchannel flows

    Get PDF
    We present a mesoscopic model of the fluid-wall interactions for flows in microchannel geometries. We define a suitable implementation of the boundary conditions for a discrete version of the Boltzmann equations describing a wall-bounded single phase fluid. We distinguish different slippage properties on the surface by introducing a slip function, defining the local degree of slip for mesoscopic molecules at the boundaries. The slip function plays the role of a renormalizing factor which incorporates, with some degree of arbitrariness, the microscopic effects on the mesoscopic description. We discuss the mesoscopic slip properties in terms of slip length, slip velocity, pressure drop reduction (drag reduction), and mass flow rate in microchannels as a function of the degree of slippage and of its spatial distribution and localization, the latter parameter mimicking the degree of roughness of the ultra-hydrophobic material in real experiments. We also discuss the increment of the slip length in the transition regime, i.e. at O(1) Knudsen numbers. Finally, we compare our results with Molecular Dynamics investigations of the dependency of the slip length on the mean channel pressure and local slip properties (Cottin-Bizonne et al. 2004) and with the experimental dependency of the pressure drop reduction on the percentage of hydrophobic material deposited on the surface -- Ou et al. (2004).Comment: 21 pages, 10 figure

    Quantum Simulator for Transport Phenomena in Fluid Flows

    Get PDF
    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.Comment: 8 pages, 3 figure

    Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows

    Get PDF
    An approach based on a lattice version of the Boltzmann kinetic equation for describing multiphase flows in nano- and microcorrugated devices is proposed. We specialize it to describe the wetting-dewetting transition of fluids in the presence of nanoscopic grooves etched on the boundaries. This approach permits us to retain the essential supramolecular details of fluid-solid interactions without surrendering¿actually boosting¿the computational efficiency of continuum methods. The method is used to analyze the importance of conspiring effects between hydrophobicity and roughness on the global mass flow rate of the microchannel. In particular we show that smart surfaces can be tailored to yield very different mass throughput by changing the bulk pressure. The mesoscopic method is also validated quantitatively against the molecular dynamics results of [Cottin-Bizonne et al., Nat. Mater. 2, 237 (2003)]

    Generalized Lattice Boltzmann Method with multi-range pseudo-potential

    Get PDF
    The physical behaviour of a class of mesoscopic models for multiphase flows is analyzed in details near interfaces. In particular, an extended pseudo-potential method is developed, which permits to tune the equation of state and surface tension independently of each other. The spurious velocity contributions of this extended model are shown to vanish in the limit of high grid refinement and/or high order isotropy. Higher order schemes to implement self-consistent forcings are rigorously computed for 2d and 3d models. The extended scenario developed in this work clarifies the theoretical foundations of the Shan-Chen methodology for the lattice Boltzmann method and enhances its applicability and flexibility to the simulation of multiphase flows to density ratios up to O(100)

    Simulation of fluid flow in hydrophobic rough microchannels

    Full text link
    Surface effects become important in microfluidic setups because the surface to volume ratio becomes large. In such setups the surface roughness is not any longer small compared to the length scale of the system and the wetting properties of the wall have an important influence on the flow. However, the knowledge about the interplay of surface roughness and hydrophobic fluid-surface interaction is still very limited because these properties cannot be decoupled easily in experiments. We investigate the problem by means of lattice Boltzmann (LB) simulations of rough microchannels with a tunable fluid-wall interaction. We introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface and observe how the position of the wall may change due to surface roughness and hydrophobic interactions. We find that the position of the effective wall, in the case of a Gaussian distributed roughness depends linearly on the width of the distribution. Further we are able to show that roughness creates a non-linear effect on the slip length for hydrophobic boundaries.Comment: 10 pages, 5 figure
    • …
    corecore