323 research outputs found

    Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture

    Get PDF
    The indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant\u27s response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined. Overall, the number of differentially expressed genes (DEGs) in Pokkali (indica) was higher than in Bengal (japonica) during low N and early N recovery treatments. Most low N DEGs in both genotypes were downregulated whereas early N recovery DEGs were upregulated. Of these, 148 Pokkali-specific DEGs might contribute to Pokkali\u27s advantage under N stress. These DEGs included transcription factors and transporters and were involved in stress responses, growth and development, regulation, and metabolism. Many DEGs are co-localized with quantitative trait loci (QTL) related to root growth and development, chlorate-resistance, and NUE. Our findings suggest that the superior growth performance of Pokkali under low N conditions could be due to the genetic differences in a diverse set of genes influencing N uptake through the regulation of root architecture

    Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice

    Get PDF
    Flowering is a key agronomic trait that influences adaptation and productivity. Previous studies have indicated the genetic complexity associated with the flowering response in a photoinsensitive weedy rice accession PSRR-1 despite the presence of a photosensitive allele of a key flowering gene Hd1. In this study, we used whole-genome and RNA sequencing data from both cultivated and weedy rice to add further insights. The de novo assembly of unaligned sequences predicted 225 genes, in which 45 were specific to PSRR-1, including two genes associated with flowering. Comparison of the variants in PSRR-1 with the 3K rice genome (RG) dataset identified unique variants within the heading date QTLs. Analyses of the RNA-Seq result under both short-day (SD) and long-day (LD) conditions revealed that many differentially expressed genes (DEGs) colocalized with the flowering QTLs, and some DEGs such as Hd1, OsMADS56, Hd3a, and RFT1 had unique variants in PSRR-1. Ehd1, Hd1, OsMADS15, and OsMADS56 showed different alternate splicing (AS) events between genotypes and day length conditions. OsMADS56 was expressed in PSRR-1 but not in Cypress under both LD and SD conditions. Based on variations in both sequence and expression, the unique flowering response in PSRR-1 may be due to the high-impact variants of flowering genes, and OsMADS56 is proposed as a key regulator for its day-neutral flowering response

    A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice (Oryza sativa L.)

    Get PDF
    Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways

    Discerning combining ability loci for divergent environments using chromosome segment substitution lines (CSSLs) in pearl millet

    Get PDF
    Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles. In the present study, testcross hybrid populations of 85 CSSLs were evaluated for 15 grain and stover yield-related traits for summer and wet seasons under irrigated control (CN) and moisture stress (MS) conditions. General combining ability (GCA) and specific combining ability (SCA) effects of all these traits were estimated and significant marker loci linked to GCA and SCA of the traits were identified. Heritability of the traits ranged from 53–94% in CN and 63–94% in MS. A total of 40 significant GCA loci and 36 significant SCA loci were identified for 14 different traits. Five QTLs (flowering time, panicle number and panicle yield linked to Xpsmp716 on LG4, flowering time and grain number per panicle with Xpsmp2076 on LG4) simultaneously controlled both GCA and SCA, demonstrating their unique genetic basis and usefulness for hybrid breeding programs. This study for the first time demonstrated the potential of a set of CSSLs for trait mapping in pearl millet. The novel combining ability loci linked with GCA and SCA values of the traits identified in this study may be useful in pearl millet hybrid and population improvement programs using marker-assisted selection (MAS)

    Statistical optimization for lipase production from solid waste of vegetable oil industry

    Get PDF
    <p>The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from <i>Bacillus licheniformis</i>, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.</p

    Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis

    Get PDF
    PURPOSE: Immune checkpoint inhibitor (ICI) therapy often is suspended because of immune-mediated diarrhea and colitis (IMDC). We examined the rate of and risk factors for IMDC recurrence after ICI resumption. METHODS: This retrospective multicenter study examined patients who resumed ICI therapy after improvement of IMDC between January 2010 and November 2018. Univariable and multivariable logistic regression analyses assessed the association of clinical covariates and IMDC recurrence. RESULTS: Of the 167 patients in our analysis, 32 resumed an anti-cytotoxic T-cell lymphocyte-4 (CTLA-4) agent, and 135 an anti-programmed cell death 1 or ligand 1 (PD-1/L1) agent. The median age was 60 years (interquartile range [IQR], 50-69 years). The median duration from IMDC to restart of ICI treatment was 49 days (IQR, 23-136 days). IMDC recurred in 57 patients (34%) overall (44% of those receiving an anti-CTLA-4 and 32% of those receiving an anti-PD-1/L1); 47 of these patients (82%) required immunosuppressive therapy for recurrent IMDC, and all required permanent discontinuation of ICI therapy. The median duration from ICI resumption to IMDC recurrence was 53 days (IQR, 22-138 days). On multivariable logistic regression, patients who received anti-PD-1/L1 therapy at initial IMDC had a higher risk of IMDC recurrence (odds ratio [OR], 3.45; 95% CI, 1.59 to 7.69; P = .002). Risk of IMDC recurrence was higher for patients who required immunosuppression for initial IMDC (OR, 3.22; 95% CI, 1.08 to 9.62; P = .019) or had a longer duration of IMDC symptoms in the initial episode (OR, 1.01; 95% CI, 1.00 to 1.03; P = .031). Risk of IMDC recurrence was lower after resumption of anti-PD-1/L1 therapy than after resumption of anti-CTLA-4 therapy (OR, 0.30; 95% CI, 0.11 to 0.81; P = .019). CONCLUSION: One third of patients who resumed ICI treatment after IMDC experienced recurrent IMDC. Recurrence of IMDC was less frequent after resumption of anti-PD-1/L1 than after resumption of anti-CTLA-4

    Phase 1b study of pegylated arginine deiminase (ADI-PEG 20) plus Pembrolizumab in advanced solid cancers

    Get PDF
    [[abstract]]Background Pegylated arginine deiminase (ADI-PEG 20) is a metabolism-based strategy that depletes arginine, resulting in tumoral stress and cytotoxicity. Preclinically, ADI-PEG 20 modulates T-cell activity and enhances the therapeutic efficacy of programmed death-1 (PD-1) inhibition. Methods A phase 1b study, including a dose-escalation cohort and an expansion cohort, was undertaken to explore the effects of ADI-PEG 20 in combination with pembrolizumab, an anti-PD-1 antibody, for safety, pharmacodynamics, and response. CD3 levels and programmed death-ligand 1 (PD-L1) expression were assessed in paired biopsies collected prior to and after ADI-PEG 20 treatment but before pembrolizumab. Results Twenty-five patients, nine in the dose-escalation cohort and sixteen in the expansion cohort, were recruited. Treatment was feasible with adverse events consistent with those known for each agent, except for Grade 3/4 neutropenia which was higher than expected, occurring in 10/25 (40%) patients. Mean arginine levels were suppressed for 1-3 weeks, but increased gradually. CD3(+) T cells increased in 10/12 (83.3%) subjects following ADI-PEG 20 treatment, including in three partial responders (p = .02). PD-L1 expression was low and increased in 3/10 (30%) of subjects. Partial responses occurred in 6/25 (24%) heavily pretreated patients, in both argininosuccinate synthetase 1 proficient and deficient subjects. Conclusions The immunometabolic combination was safe with the caveat that the incidence of neutropenia might be increased compared with either agent alone. ADI-PEG 20 treatment increased T cell infiltration in the low PD-L1 tumor microenvironment. The recommended phase 2 doses are 36 mg/m(2) weekly for ADI-PEG 20 and 200 mg every 3 weeks for pembrolizumab

    Resumption of Immune Checkpoint Inhibitor Therapy After Immune-Mediated Colitis

    Get PDF
    PURPOSE: Immune checkpoint inhibitor (ICI) therapy often is suspended because of immune-mediated diarrhea and colitis (IMDC). We examined the rate of and risk factors for IMDC recurrence after ICI resumption. METHODS: This retrospective multicenter study examined patients who resumed ICI therapy after improvement of IMDC between January 2010 and November 2018. Univariable and multivariable logistic regression analyses assessed the association of clinical covariates and IMDC recurrence. RESULTS: Of the 167 patients in our analysis, 32 resumed an anti–cytotoxic T-cell lymphocyte-4 (CTLA-4) agent, and 135 an anti–programmed cell death 1 or ligand 1 (PD-1/L1) agent. The median age was 60 years (interquartile range [IQR], 50-69 years). The median duration from IMDC to restart of ICI treatment was 49 days (IQR, 23-136 days). IMDC recurred in 57 patients (34%) overall (44% of those receiving an anti–CTLA-4 and 32% of those receiving an anti–PD-1/L1); 47 of these patients (82%) required immunosuppressive therapy for recurrent IMDC, and all required permanent discontinuation of ICI therapy. The median duration from ICI resumption to IMDC recurrence was 53 days (IQR, 22-138 days). On multivariable logistic regression, patients who received anti–PD-1/L1 therapy at initial IMDC had a higher risk of IMDC recurrence (odds ratio [OR], 3.45; 95% CI, 1.59 to 7.69; P = .002). Risk of IMDC recurrence was higher for patients who required immunosuppression for initial IMDC (OR, 3.22; 95% CI, 1.08 to 9.62; P = .019) or had a longer duration of IMDC symptoms in the initial episode (OR, 1.01; 95% CI, 1.00 to 1.03; P = .031). Risk of IMDC recurrence was lower after resumption of anti–PD-1/L1 therapy than after resumption of anti–CTLA-4 therapy (OR, 0.30; 95% CI, 0.11 to 0.81; P = .019). CONCLUSION: One third of patients who resumed ICI treatment after IMDC experienced recurrent IMDC. Recurrence of IMDC was less frequent after resumption of anti–PD-1/L1 than after resumption of anti–CTLA-
    corecore