698 research outputs found

    Low Resolution Solution Structure of HAMLET and the Importance of Its Alpha-Domains in Tumoricidal Activity.

    Get PDF
    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells

    A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment

    Get PDF
    TFN membranes containing 0.05 or 0.10 w/v% surface-functionalized TNTs in a PA selective layer were synthesized for better performances in water/wastewater treatment.</p

    Widespread sex differences in gene expression and splicing in the adult human brain

    Get PDF
    There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures

    Socio-Demographic Determinants of Condom Use Among Sexually Active Young Adults in Rural KwaZulu-Natal, South Africa

    Get PDF
    AIM: To investigate patterns, levels and socio-demographic determinants of condom use and consistency of use among young adults aged 15-24 years.BACKGROUND: Condoms are known to prevent HIV infection. However, HIV prevalence and incidence remain high.METHODS: This study was conducted in the Africa Centre Demographic Surveillance Area (ACDSA) in rural KwaZulu-Natal. Analysis focused on resident young adults aged 15-24 years in 2005. In univariable and multivariable analyses, determinants of condom use and consistency of use among 15-24 year olds were estimated using data collected in 2005. 'Ever' condom use was defined as the proportion who reported having used a condom; consistent use among those ever using as "always" using condoms with most recent partner in the last year.RESULTS: 3,914 participants aged 15-24 years reported ever having sex, of whom 52% reported condom use. Adjusting for age, sex, number of partners, residence of partner, partner age difference, type of partner and socio-economic status (SES), having an older partner decreased likelihood (aOR=0.69, p&lt;0.01), while belonging to a household in a higher SES increased likelihood of ever using condoms (aOR=1.82, p&lt;0.01). Being female (aOR=0.61 p&lt;0.01) and having a regular partner (aOR=0.65 p&lt;0.01) were independently associated with low consistent condom use.CONCLUSIONS: In this rural South African setting, condom use remains low, especially among females and with an older partner, situations commonly associated with increased HIV acquisition. Targeted supportive interventions to increase condom use need to be developed if HIV prevention programmes are to be successful

    Identifying Tightly Regulated and Variably Expressed Networks by Differential Rank Conservation (DIRAC)

    Get PDF
    A powerful way to separate signal from noise in biology is to convert the molecular data from individual genes or proteins into an analysis of comparative biological network behaviors. One of the limitations of previous network analyses is that they do not take into account the combinatorial nature of gene interactions within the network. We report here a new technique, Differential Rank Conservation (DIRAC), which permits one to assess these combinatorial interactions to quantify various biological pathways or networks in a comparative sense, and to determine how they change in different individuals experiencing the same disease process. This approach is based on the relative expression values of participating genes—i.e., the ordering of expression within network profiles. DIRAC provides quantitative measures of how network rankings differ either among networks for a selected phenotype or among phenotypes for a selected network. We examined disease phenotypes including cancer subtypes and neurological disorders and identified networks that are tightly regulated, as defined by high conservation of transcript ordering. Interestingly, we observed a strong trend to looser network regulation in more malignant phenotypes and later stages of disease. At a sample level, DIRAC can detect a change in ranking between phenotypes for any selected network. Variably expressed networks represent statistically robust differences between disease states and serve as signatures for accurate molecular classification, validating the information about expression patterns captured by DIRAC. Importantly, DIRAC can be applied not only to transcriptomic data, but to any ordinal data type

    Pd Nanoparticles and Thin Films for Room Temperature Hydrogen Sensor

    Get PDF
    We report the application of palladium nanoparticles and thin films for hydrogen sensor. Electrochemically grown palladium particles with spherical shapes deposited on Si substrate and sputter deposited Pd thin films were used to detect hydrogen at room temperature. Grain size dependence of H2sensing behavior has been discussed for both types of Pd films. The electrochemically grown Pd nanoparticles were observed to show better hydrogen sensing response than the sputtered palladium thin films. The demonstration of size dependent room temperature H2sensing paves the ways to fabricate the room temperature metallic and metal–metal oxide semiconductor sensor by tuning the size of metal catalyst in mixed systems. H2sensing by the Pd nanostructures is attributed to the chemical and electronic sensitization mechanisms

    Real-Time Self-Regulation of Emotion Networks in Patients with Depression

    Get PDF
    Many patients show no or incomplete responses to current pharmacological or psychological therapies for depression. Here we explored the feasibility of a new brain self-regulation technique that integrates psychological and neurobiological approaches through neurofeedback with functional magnetic resonance imaging (fMRI). In a proof-of-concept study, eight patients with depression learned to upregulate brain areas involved in the generation of positive emotions (such as the ventrolateral prefrontal cortex (VLPFC) and insula) during four neurofeedback sessions. Their clinical symptoms, as assessed with the 17-item Hamilton Rating Scale for Depression (HDRS), improved significantly. A control group that underwent a training procedure with the same cognitive strategies but without neurofeedback did not improve clinically. Randomised blinded clinical trials are now needed to exclude possible placebo effects and to determine whether fMRI-based neurofeedback might become a useful adjunct to current therapies for depression

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    Get PDF
    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore