10 research outputs found

    Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora

    Get PDF
    The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications

    Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity

    Get PDF
    Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase family 16 (CE16) is one of the more recently discovered CAZy families, but only a small number of its enzyme members have been characterized so far, revealing activity on xylan-derived oligosaccharides, as well as activity related to galactoglucomannan. The number of CE16 genes differs significantly in the genomes of filamentous fungi. In this study, four CE16 members were identified in the genome of Aspergillus niger NRRL3 and it was shown that they belong to three of the four phylogenetic Clades of CE16. Significant differences in expression profiles of the genes and substrate specificity of the enzymes were revealed, demonstrating the diversity within this family of enzymes. Detailed characterization of one of these four A. niger enzymes (HaeA) demonstrated activity on oligosaccharides obtained from acetylated glucuronoxylan, galactoglucomannan and xyloglucan, thus establishing this enzyme as a general hemicellulose acetyl esterase. Their broad substrate specificity makes these enzymes highly interesting for biotechnological applications in which deacetylation of polysaccharides is required.Peer reviewe

    The Salicylic Acid-Mediated Growth-Immunity Tradeoff in Arabidopsis

    No full text
    Plants have a dynamic immune system to protect themselves against pathogens. Recognition of a pathogen leads to the activation of this immune system, steered by different phytohormones. One of these, salicylic acid, regulates plant responses to biotrophic pathogens that thrive on living host tissue. Typical SA-mediated responses are the production of antimicrobial proteins and metabolites and the strengthening of the cell wall. These responses can occur both locally and systemically. Due to their nature, these responses cost energy and resources that cannot be invested in plant growth and development. This suppression also works the other way around: active growth and developmental processes suppress immunity. This mutual inhibition is called the growth-immunity tradeoff and is actively regulated by the plant. The research in this thesis is focused on the model plant Arabidopsis thaliana (thale cress), in which the SA content is controlled at the level of synthesis and catabolism. Two enzymes that catabolize SA through hydroxylation are the paralogous 2-oxoglutarate Fe(II)-dependent oxygenases DMR6/S5H (DOWNY MILDEW RESISTANT 6/SA 5-HYDROXYLASE) and DLO1/S3H (DMR6-LIKE OXYGENASE 1/SA 3-HYDROXYLASE). dmr6/dlo1 mutants have enhanced SA levels and therefore a constitutively active immune system and enhanced disease resistance. The high SA levels of double mutant plants cause hyperresistance but also dwarfism. On the other hand, overexpression of DMR6 or DLO1 leads to depletion of SA and thus enhanced susceptibility. We use the perturbed SA catabolism of the dmr6/dlo1 mutants and DMR6/DLO1 overexpression lines to investigate the SA-mediated growth-immunity tradeoff. We found that altered expression of DMR6 and/or DLO1 had major effects on the transcriptome that correlated to the plant’s SA content. We found that enhanced SA levels in dmr6/dlo1 mutants caused reduced photosynthetic efficiency and a sped up development and reduced SA levels in DMR6/DLO1 overexpression lines led to reduced pathogen-associated molecular pattern (PAMP)-triggered immune responses. We further identified a significant effect of the genetic background to perturbations in DMR6/DLO1 expression in different Arabidopsis accessions: several Arabidopsis accessions had a reduced growth tradeoff but retained high disease resistance. To systematically investigate the genetics behind regulation of the growth-immunity tradeoff, we further employed a forward genetics screen for restored growth and high resistance in dmr6-3 dlo1 double mutants and identified seven unique zund mutants. These plants carried mutations in known regulators of SA synthesis (ICS1, ISOCHORISMATE SYNTHASE 1), perception (NPR1, NONEXPRESSOR OF PR GENES 1), or signaling (PAD4, PHYTOALEXIN DEFICIENT 4), indicating that a suppression of SA synthesis or SA responses reduces the growth tradeoff in high immunity dmr6-3 dlo1 mutants. Three other zund mutants carried a mutation in the same gene: MED15a (MEDIATOR 15a), a component of the MEDIATOR complex for transcription initiation. We investigate the function of MED15a in the growth-immunity tradeoff in detail, and find that around 80% of dmr6-3 dlo1-induced gene expression changes are genetically dependent on the integrity of two amino acids in the MED15a kinase-inducible (KIX) domain. I discuss the implications of this research for applications to breed for sustainable disease resistance in crops

    GH10 and GH11 endoxylanases in Penicillium subrubescens: Comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus

    No full text
    Penicillium subrubescens has an expanded set of genes encoding putative endoxylanases (PsXLNs) compared to most other Penicillia and other fungi. In this study, all GH10 and GH11 PsXLNs were produced heterologously in Pichia pastoris and characterized. They were active towards beech wood xylan (BWX) and wheat flour arabinoxylan (WAX), and showed stability over a wide pH range. Additionally, PsXLNs released distinct oligosaccharides from WAX, and showed significant cooperative action with P. subrubescens α-L-arabinofuranosidases (PsABFs) from GH51 or GH54 for WAX degradation, giving insight into a more diverse XLN and ABF system for the efficient degradation of complex hemicelluloses. Homology modeling analysis pointed out differences in the catalytic center of PsXLNs, which are discussed in view of the different modes of action observed. These findings facilitate understanding of structural requirements for substrate recognition to contribute to recombinant XLN engineering for biotechnological applications

    Congruent downy mildew-associated microbiomes reduce plant disease and function as transferable resistobiomes

    No full text
    Root-associated microbiota can protect plants against severe disease outbreaks. In the model-plant Arabidopsis thaliana, leaf infection with the obligate downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) results in a shift in the root exudation profile, therewith promoting the growth of a selective root microbiome that induces a systemic resistance against Hpa in the above-ground plant parts. Here we show that, additionally, a conserved subcommunity of the recruited soil microbiota becomes part of a pathogen-associated microbiome in the phyllosphere that is vertically transmitted with the spores of the pathogen to consecutively infected host plants. This subcommunity of Hpa-associated microbiota (HAM) limits pathogen infection and is therefore coined a “resistobiome”. The HAM resistobiome consists of a small number of bacterial species and was first found in our routinely maintained laboratory cultures of independent Hpa strains. When co-inoculated with Hpa spores, the HAM rapidly dominates the phyllosphere of infected plants, negatively impacting Hpa spore formation. Remarkably, isogenic bacterial isolates of the abundantly-present HAM species were also found in strictly separated Hpa cultures across Europe, and even in early published genomes of this obligate biotroph. Our results highlight that pathogen-infected plants can recruit protective microbiota via their roots to the shoots where they become part of a pathogen-associated resistobiome that helps the plant to fight pathogen infection. Understanding the mechanisms by which pathogen-associated resistobiomes are formed will enable the development of microbiome-assisted crop varieties that rely less on chemical crop protection

    Wild and domesticated lettuce species differ in intestinal biological efficacy

    No full text
    Lettuce (Lactuca sativa) is one of the most consumed and cultivated vegetables globally. Its breeding is focused on the improvement of yield and disease resistance. However, potential detrimental or beneficial health effects for the consumer are often not targeted in the breeding programs. Here, a bioengineered intestinal tubule was used to assess the intestinal efficacy of extracts from five plant accessions belonging to four Lactuca species. These four species include the domesticated L. sativa, closely related wild species L. serriola, and phylogenetically more distant wild relatives L. saligna and L. virosa. We assessed the epithelial barrier integrity, cell viability, cell attachment, brush border enzyme activity, and immune markers. Extracts from L. sativa cv. Salinas decreased cell attachment and brush border enzyme activity. However, extracts from the non-edible wild species L. saligna and L. virosa strongly affected epithelial barrier, cell attachment, cell viability, and brush border enzyme activity. Since wild species represent a valuable germplasm pool, the bioengineered intestinal tubules could open ways to evaluate the safety and nutritional properties of the lettuce breeding material originating from crosses with wild Lactuca species

    Necrosis and ethylene-inducing-like peptide patterns from crop pathogens induce differential responses within seven brassicaceous species

    No full text
    Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea

    Variation in plant Toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1

    No full text
    Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity

    Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi : Obba rivulosa and Gelatoporia subvermispora

    No full text
    The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.Special Issue: Regulation and Mechanisms of Plant Biomass Degrading Enzymes from Fungi</p

    Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases

    Get PDF
    Feruloyl esterases (FAEs) and acetyl xylan esterases (AXEs) are important enzymes for plant biomass degradation and are both present in Carbohydrate Esterase family 1 (CE1) of the Carbohydrate-Active enZymes database. In this study, ten novel fungal CE1 enzymes from different subfamilies were heterologously produced and screened for their activity towards model and complex plant biomass substrates. CE1_1 enzymes possess AXE activity, while CE1_5 enzymes showed FAE activity. Two enzymes from CE1_2 and one from CE1_5 possess dual feruloyl/acetyl xylan esterase (FXE) activity, showing expansion of substrate specificity. The new FXEs from CE1 can efficiently release both feruloyl and acetyl residues from feruloylated xylan, making them particularly interesting novel components of industrial enzyme cocktails for plant biomass degradation
    corecore