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A B S T R A C T   

Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and 
are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase 
family 16 (CE16) is one of the more recently discovered CAZy families, but only a small number of its enzyme 
members have been characterized so far, revealing activity on xylan-derived oligosaccharides, as well as activity 
related to galactoglucomannan. The number of CE16 genes differs significantly in the genomes of filamentous 
fungi. In this study, four CE16 members were identified in the genome of Aspergillus niger NRRL3 and it was 
shown that they belong to three of the four phylogenetic Clades of CE16. Significant differences in expression 
profiles of the genes and substrate specificity of the enzymes were revealed, demonstrating the diversity within 
this family of enzymes. Detailed characterization of one of these four A. niger enzymes (HaeA) demonstrated 
activity on oligosaccharides obtained from acetylated glucuronoxylan, galactoglucomannan and xyloglucan, thus 
establishing this enzyme as a general hemicellulose acetyl esterase. Their broad substrate specificity makes these 
enzymes highly interesting for biotechnological applications in which deacetylation of polysaccharides is 
required.   

Introduction 

Hemicelluloses are the second most abundant polysaccharides in 
plant cell walls after cellulose and consist of three main structures, 
(arabino-)glucuronoxylan, xyloglucan and galactoglucomannan [1], 
that share as a common feature acetylation of some residues. In xylan 
and mannan, acetylation occurs mainly at xylopyranosyl and man
nopyranosyl residues, respectively, at positions 2 or 3 [2]. Acetylation in 

xyloglucan occurs in both main chain glucopyranosyl residues and side 
chain galactopyranosyl and arabinofuranosyl residues [2]. Acetylation 
can inhibit enzymatic degradation of mannan [3] and xylan [4], and 
therefore most fungi that degrade plant biomass also contain genes 
encoding acetyl esterases in their genomes [5–7]. Deacetylation of 
polysaccharides is also relevant for biotechnological applications [8] 
and the production of oligosaccharides [9]. 

Acetyl esterases are part of the Carbohydrate Active Enzyme 

Abbreviations: Ac, acetyl; CAZy, carbohydrate active enzyme; CE, carbohydrate esterase; diAc, monosaccharide residues with two acetyl residues attached to 
them; HAE, hemicellulose acetyl esterase; MAFFT, Multiple Alignment using Fast Fourier Transform; MeGlcA, methyl-glucuronic acid. 
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Database (www.cazy.org) [10] in several Carbohydrate Esterase (CE) 
families. CE1 and CE5 have received the most attention, but studies on 
CE2, CE4, CE6, CE7 and some on CE16 have also been reported [2]. The 
CE16 CAZy family belongs to the GDSL family of serine esterases/lipases 
which is part of the SGNH hydrolase-type esterase domain scaffold [11, 
12], and their relationship was to SGNH hydrolases was recently 
explored in a phylogenetic study [13]. 

The first comparison of two fungal CE16 enzymes on hemicellulose 
initially demonstrated that T. reesei and M. thermophila CE16s have 
similar modes of action on xylan oligosaccharides [14]. Both enzymes 
were described as exo-deacetylases due to their preference for acetyl 
groups on the non-reducing end of xylan oligosaccharides. Both enzymes 
showed a similar synergistic effect when a xylanase was also present 
[14]. M. thermophila CE16 was also shown to remove internal acetyl 
groups from xylan oligosaccharides and deacetylate 2-O-GlcA,3Ac resi
dues to a limited extent [15]. Deacetylation of the non-reducing end by 
T. reesei CE16 was extensively studied [16], demonstrating that only 
xylan oligosaccharides acetylated at the non-reducing end are substrates 
for this enzyme, which also catalyzes 3-O -deacetylation of 
MeGlcA-substituted non-reducing-end xylopyranosyl residues [17]. 
Whether glucuronylated or not, xylan oligosaccharides acetylated at 
position 3 are deacetylated, but 2-acetyl (2-Ac) substituents are not 
hydrolyzed [18]. 

The xyloligosaccharide specificity of a CE16 from A. niger is similar 
to that of the T. reesei enzyme. Both enzymes appear only to attack the 
non-reducing end residue and deacetylate 3-Ac positions in 3-Ac, 2,3-Ac 
and 2-O-GlcA,3-Ac substituted residues, but the A. niger CE16 also 
deacetylates the 2 positions in 2-Ac and 2,3-Ac non-reducing end resi
dues [19]. P. anserina CE16, on the other hand, deacetylates polymeric 
birchwood acetylglucuronoxylan. Its activity is similar to enzymes from 
CE1, CE4, CE5 and CE6, because it does not deacetylate glucuronylated 
positions, and prefers to remove acetyl groups most rapidly from 
di-acetylated (2,3-) xylose residues and more slowly from mono- 2-Ac 
and 3-Ac substituted residues [20]. 

Although activities and positional specificities of these four CE16 
enzymes on xylan have been well described, information about deace
tylation of mannans and xyloglucans is much more limited. T. reesei 
CE16 can transfer acetyl groups to mannooligosaccharides [21] and 
deacetylate mannooligosaccharides [22,23], while M. thermophila CE16 
removes O-2 and O-3 acetyl groups from spruce galactoglucomannan to 
a limited extent [15]. A potential role for CE16 acetyl esterases in the 
de-acetylation of mannan in vivo was suggested by transcriptomics of 
Aspergillus oryzae, where a candidate CE16 encoding gene was 
controlled by the mannanolytic regulator ManR, [24]. There are no re
ports of CE16 enzymes acting on xyloglucans. 

In this study, the substrate specificities of four CE16 enzymes from 
A. niger were compared. While only two CE16 genes were identified in 
the genome of A. niger CBS 513.88 [6], four CE16 genes were found in 
the gold-standard genome of A. niger NRRL3 [25]. Comparison of their 
activity on different model, poly- and oligomeric substrates showed 
different substrate specificities for these enzymes. One of them, HaeA, 
was purified and characterized in more detail, revealing that it is active 
on mannan, xylan and xyloglucan oligosaccharides. 

Materials and methods 

Phylogeny 

Amino acid sequences of selected fungal CE16 candidates were ob
tained from the MycoCosm Webportal from the Joint Genome Institute 
(JGI, https://genome.jgi.doe.gov/mycocosm/home) and the CAZy 
website (http://www.cazy.org/CE16_characterized.html). SignalP 4.1 
(http://www.cbs.dtu.dk/services/SignalP/) was used to identify and 
remove putative signal peptides. Unusually long and incomplete se
quences were corrected manually based on BlastX alignment, whereas 
duplicate and ambiguous sequences were discarded. Sequence 

alignment was performed using MAFFT [26]. A phylogenetic tree was 
constructed using the Maximal Likelihood method of the MEGA7 pro
gram [27] with the Poisson correction distance of substitution rates, 
1000 bootstrap re-samplings and complete deletion of gaps. The same 
settings were used for the Minimal Evolution and Neighbor-Joining 
trees, which were performed as comparison and bootstrap values ≥ 50 
were added to the Maximal Likelihood tree. Four CE1 sequences were 
included as an outgroup. 

Expression analysis 

Expression of the four A. niger CE16 genes was analyzed in previously 
published transcriptome data [28–31]. The promoter regions of the 
genes (1000 bp) were analyzed for the presence of putative binding sites 
for XlnR (GGCTARAG) [32], AraR (CGGDGATTAAWAT) [33], GaaR 
(CCNACGTCCAA) [28], RhaR (TGVCAGDGTACGG) [30] and CreA 
(SGCYCTGGRAGG) [34]. 

Cloning and protein production 

Genomic sequences encoding HaeA, HaeB, HaeC and HaeD were 
obtained from the A. niger NRRL3 genome (http://genome.fungalge
nomics.ca/). Gene sequences were amplified by PCR using genomic DNA 
from A. niger NRRL3 as template [35]. The genes were cloned between 
the promoter and terminator of the A. niger glucoamylase gene of the 
ANIp7 integrative vector [36] using Ligation-Independent Cloning [37]. 
Primers are listed in Supplemental Table S1. 

E. coli transformation, propagation and plasmid DNA isolation were 
performed using standard techniques [38]. The gene haeC was intro
duced by protoplast transformation [39,40] into strain CSFG_6002 
(N593 ΔglaA) and the other three genes were introduced into 
CSFG_6012 (CSFG_6002 ΔamyC ΔagdA ΔaamA). Supernatants from 
transformants were screened for recombinant protein production in 
liquid MMJ medium [41] containing 15 g/L maltose. 

Spores from positive transformants were inoculated in 200 mL MMJ 
medium at a concentration of 2 × 106 conidia/mL. Supernatants were 
harvested after incubating stationary cultures for 5 days at 30 oC. They 
were then desalted and concentrated using Vivaflow® cassettes based on 
the manufacturer’s protocol (Sartorius). 

Production and purification of HaeA enzyme 

A recombinant haeA-expressing strain of A. niger was grown on MMJ. 
Following stationary cultivation for five days, the growth medium was 
clarified by centrifugation at 3700 x g for 30 min at 4 ◦C, and concen
trated and buffer-exchanged using a Vivaflow 200 (Sartorius, Goettin
gen, Germany) device. The concentrated solution containing HaeA was 
buffer-exchanged (Macrosep devices, see below) using 45 mM Tris-HCl, 
pH 8.8, and then applied onto a 5 mL anion exchange column (HiTrap® 
DEAE-FF, GE Healthcare, Mississauga, Canada), washed with five vol
umes of buffer, and eluted using a linear gradient (flow rate, 6 mL/min) 
between 0 and 2 M NaCl in 45 mM Tris-HCl, pH 8.8. SDS-PAGE was used 
to evaluate the elution fractions. Fractions containing HaeA were 
pooled, protein concentrated using Macrosep® Advance Centrifugal 
Devices (10 K cutoff, Pall Corporation, Mississauga, Canada), and loaded 
onto a Superdex 75 10/300 GL (GE Life Sciences, Mississauga, Canada) 
gel filtration column equilibrated with 45 mM Tris-HCl, pH 8.8 con
taining 2 M NaCl. Chromatography was performed using a BioRad 
(Mississauga, Canada) DuoFlow System at room temperature. After SDS- 
PAGE inspection, the protein was concentrated to 1.56 mg/mL and 
stored at − 80 ◦C for further experiments. 

Enzyme assays on pNP substrates and acetylated carbohydrates 

All activity measurements were performed in 150 µL reaction vol
umes in 96 well microplates at 25 ◦C, using the cell supernatants 
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prepared as described above. Diluted protein solutions were prepared at 
0.15 mg/mL (in 20 mM HEPES buffer containing 100 mM NaCl, pH 7.2); 
from these, 2 µL were used for enzyme activity measurement (final 
enzyme concentration was approx. 2 µg/mL). 

Enzymes were tested for activity using para-nitrophenyl (pNP) esters 
with different chain lengths (acetate (2 C); butyrate (4 C) (Sigma 
Aldrich, St. Louis, MO, USA) performed in 20 mM HEPES, pH 7.2 with 
100 mM NaCl, and 1 mM pNP-esters. pNP-acetate was used for activity 
assays with varying pH conditions using McIlvaine’s buffer system (with 
varying concentrations of citric acid and Na2HPO4). Absorbance was 
registered at 348 nm every 30 s for 30 min using an Infinite 200 PRO 
Tecan (Morrisville, NC, USA) plate reader. Slopes (absorbance/min) 
were transformed into specific activity (µmol/min/mg of protein: U/mg) 
using an extinction coefficient of 18,000 M-1 cm-1 with the Lambert-Beer 
law [42] and subtracting non enzymatic auto-hydrolysis of the substrate 
at each pH. 

Activity towards acetylated carbohydrates was tested using 96-well 
microplates, based on [43]. The reaction mixture contained 5 mM 
HEPES at pH 7.2, 100 mM NaCl and 0.05% bromothymol blue. Fully 
acetylated monosaccharides (Carbosynth, San Diego, CA, USA) were 
added to a final concentration of 0.1% (initially dissolved in 100% 
ethanol), whereas xylooligosaccharides (DP-2–7, 95% pure) (Cascade 
Analytical Reagents and Biochemicals, OR, USA) and konjac gluco
mannan (Megazyme, Bray, Ireland) were present at a concentration of 
1%. The absorbance ratios between protonated (432 nm) and deproto
nated (616 nm) forms of the bromothymol blue were registered daily 
using an Infinite 200 PRO Tecan plate reader and incubations occurred 
at room temperature using approx. 2 µg/mL of enzyme sample. In
cubations were performed during 3 days at room temperature, in 5 mM 
HEPES buffer, pH 7.2, supplemented with 0.01% bromothymol blue. 

An acetylated xylooligosaccharide mixture from hydrothermal 
treatment of Eucalyptus globulus wood [44] was kindly provided by 
Professor J. C. Parajó (University of Vigo, Spain). Spruce 
acetyl-galactoglucomannan isolated from the TMP mill process waters 
[45] was from Prof. Willför (Åbo Akademi University, Finland). Acety
lated sugar beet pectin (Pectin Betapec RU301) was obtained from 
Herbstreith & Fox KG, Neuenbürg, Germany. 

Acetylated xylooligosaccharide mixture and acetylated gal
actoglucomannan were hydrolyzed to shorter fragments with Shear
zyme endo-1,4-β-xylanase (TM500L, 10,000 nkat/g substrate) 
(Novozymes, Bagsværd, Denmark) and A. niger endo-1,4-β-mannanase 
(E-BMANN, 2 000 nkat/g substrate) + Cellulomonas fimi β-mannosidase 
(E-BMOSCF 500 nkat/g substrate) (Megazyme), respectively, in 50 mM 
sodium citrate buffer, pH 5.0, at 40ºC for 24 h, after which the enzymes 
were inactivated in a boiling water bath for 10 min 

Reaction conditions for intensive esterase treatments were: 2 mg/mL 
substrate concentration, 20 mM sodium citrate buffer, pH 5.0, 40ºC for 
40 h. All esterases were dosed at 10 µg/mg substrate. For the determi
nation of total Ac content in the substrates, NaOH was added to a final 
concentration of 0.1 M, the samples were incubated overnight, and then 
neutralized to pH 5–7 with HCl. Acetic acid released by the enzyme or 
alkali treatments was quantified with the K-ACET kit (Megazyme). 

NMR spectroscopy 

Samples (600 µL) were prepared at pH 7.4 with 100 mM phosphate 
buffer (K2HPO4/KH2PO4 diluted in D2O (Sigma-Aldrich)) and supple
mented with HaeA, or other enzymes mentioned below, at protein 
concentrations of 2 mg/L. Xylooligosaccharides (Cascade Analytical 
Reagents and Biochemicals,) and konjac glucomannan (Megazyme) 
were used at 2% and 0.67% concentration, respectively. Samples were 
prepared in duplicate (and single repetitions) and proton nuclear mag
netic resonance spectra (1H NMR) were measured on a Varian (Mis
sissauga, Canada) VNMRS-500 MHz spectrometer in 5 mm NMR tubes at 
298 K. Results shown represent a single measurement spectrum for each 
condition: the chemical shifts were calibrated using the HDO solvent 

peak at 4.8 ppm as reference. 
In addition to HaeA, an in-house produced and purified CE5 esterase 

was used (Humicola hyalothermophila Humhy2p7_000603 (http:// 
genome.fungalgenomics.ca/) for comparative purposes. Both purified 
enzymes were applied on xylan oligosaccharides (as described above) 
and five proton signals in the 2.0–2.3 ppm region (Fig. 6A, dashed box) 
were monitored. Three of these acetylation peaks are assigned based on 
previously published data of xylan oligosaccharides derived from aspen 
[46,47] and Eucalyptus [19]. In the case of konjac glucomannan, the 1H 
NMR peak assignment was based on two recent papers [48,49], and also 
on in-house 2D NMR data collected before the present work (unpub
lished data). 

Viscometry of konjac glucomannan in the presence of HaeA 

Viscosity was measured using a size 200 Cannon-Fenske 20–100 cSt 
routine viscometer (Thermo Fisher, Waltham, MA, USA). A substrate 
blank solution consisted of 5 mL 2% low viscosity konjac glucomannan 
(Megazyme) and 250 µL of 1 M phosphate buffer, pH 6. The solution was 
gently poured into the viscometer, pre-incubated in a water bath at 
37 ◦C, and the flow time was measured until it remained constant. The 
reaction was started by adding 50 µL of purified enzyme (0.85 mg/mL) 
and the flow time and total reaction time were measured at various time 
points. Reciprocal specific viscosity was calculated as the quotient of 
flow time of water divided by the difference in the flow time of the so
lution minus the flow time of water. The dynamic viscosity was calcu
lated as the product of the dynamic viscosity of water times the quotient 
of the flow time of solution divided by the flow time of water. 

Mass spectrometry for oligosaccharide mass profiling 

5–6 weeks old Arabidopsis thaliana plants (Columbia type) were 
washed with distilled water and 70% ethanol, after which leaves and 
stems were separated. Tissue material was stored at − 80 ◦C until use. 
Plant material was disrupted in 1.5 mL volumetric tubes. Two glass 
beads (2 mm diameter) were added to the material plus 500 µL 70% 
ethanol, then disrupted using a bead-beater device for 5 min in a 4 ◦C 
room. The solutions were centrifuged at 4000 g and alcohol insoluble 
residues collected, washed with 70% ethanol (final step with absolute 
ethanol), and stored at room temperature as powder. 

Two spatula tips of Arabidopsis-derived alcohol insoluble residues 
(AIR) were placed into 1.5 mL volumetric tubes and 150 µL of 5 mM 
HEPES, pH 7.2, was added. In order to produce soluble xyloglucan oli
gosaccharides, 10 µL of GH74 enzyme (Paenibacillus sp. xyloglucanase, 
Megazyme) (final concentration of 6.7 U/mL) was added to these AIR 
suspensions. After an overnight incubation (approx. 16 h) at 37 ◦C, the 
suspensions were centrifuged at 6000 rpm for 10 min to separate soluble 
xyloglucans from the insoluble AIR material. After centrifugation, 140 
µL of these supernatants were placed into fresh tubes, and HaeA was 
added (controls with no enzyme or other enzymes were also prepared). 
After overnight incubation, the solutions were rotavaporated to total 
dryness and re-suspended in 10 µL of distilled water. A tip of spatula of 
BioRad (Mississauga, Canada) cation exchange resin beads was also 
added to each tube. Equivalent volumes of diluted sample and 2,5 
dihydroxybenzoic acid (Sigma-Aldrich, Oakville, Canada; 10 mg/mL in 
50:50 mix of acetonitrile and 0.1% (v/v) trifluoroacetic acid) were co- 
crystallized and spotted onto 384-spot ground steel targets using the 
dried droplet method. MS spectra were acquired using an ultra
fleXtreme™ MALDI-TOF/TOF system (Bruker Daltonics, Bremen, Ger
many) in positive ion reflector mode (calibrated mass range of 
700–3500 m/z; FlexControl v3.4 software). Ion intensities for sample 
sets (replicate measurements, independent trials) were evaluated in 
FlexAnalysis (v3.4 software) by averaging four measurements of 500 
shots each (i.e. 2000 shots total per sample). 
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Results 

Fungal CE16 enzymes separate into four distinct Clades and have diverse 
expression profiles 

Phylogenetic analysis of selected CE16 amino acid sequences resul
ted in four distinct Clades (Fig. 1). Currently, only two enzymes from 
Clade 1 [14,17,20,50,51], one from Clade 2 [17,19], and one from Clade 
3 [52] have been (partially) characterized, demonstrating their ability to 
release acetyl groups from xylan or D-xylose. A. niger NRRL3 contains 
four CE16 candidates, one in Clade 1 (NRRL3_04916, haeA), one in 
Clade 2 (NRRL3_06053, haeB, the ortholog of CAK45102 [17]), and two 
in Clade 3 (NRRL3_08786, haeC, and NRRL3_06379, haeD). Orthologs 
for only haeA and haeB are detected in A. niger CBS513.88 [6]. Amino 
acid sequence similarity of the four A. niger genes is limited, and no 
distinct region of high homology can be identified (Suppl. Fig. S1). 

Expression of haeA-D was analyzed in data from published tran
scriptome studies [28–31] (Suppl. Fig. 2) and summarized in Table 1. 
Despite encoding an active protein, no expression was observed for haeC 
under any of the tested conditions. The other genes were all expressed on 
plant biomass related substrates. Expression of haeA was highest on corn 
stover and soybean hulls, while on sugar beet pulp the highest expres
sion was observed for haeB (Suppl. Fig. 2). Deletion of the major (hemi-) 
cellulolytic regulator in A. niger (XlnR) [53] or the pectinolytic regulator 
(GaaR) [28] resulted in strongly reduced expression of haeA, haeB and 
haeD (Suppl. Fig. 2), even though a putative XlnR binding site was only 
detected in the haeA promoter, and no putative GaaR binding sites were 
detected in the promoter of any of the genes. Deletion of the arabina
nolytic regulator AraR [54] reduced the expression of all three genes at 
early time points on sugar beet pulp, but a putative AraR binding site 
was only detected in the haeD promoter. Similarly, deletion of the 
general carbon catabolite repressor CreA [55] resulted in increased 
expression of all three genes only at early time points on wheat bran and 
sugar beet pulp (Suppl. Fig. 2). 

Recombinant production of the four A. niger enzymes reveals distinct 
differences in substrate specificity 

HaeA-D were produced recombinantly in A. niger for biochemical 
characterization. No background activity was detected in the production 
strain, and therefore initial experiments were performed using the crude 
supernatants of these strains. 

Chain-length preference and pH-activity profiles 
Using pNP-acetate at pH 7.2, HaeC showed the lowest specific ac

tivity (4.8 U/mg), while the other enzymes had specific activities 
> 40 U/mg, with HaeD being the most active at ~170 U/mg (Fig. 2A). 
In contrast, HaeC was the only enzyme active on pNP-butyrate, with a 
specific activity similar to that observed for pNP-acetate. It should be 
noted that the production level of HaeC was very low so while its data 
could not be fully used quantitatively, it was included for qualitative 
value. 

Using pNP-acetate as a substrate, the enzymes, in general, preferred 
neutral-basic pH values, but with distinct differences (Fig. 2B). HaeC 
had the most acidic profile with a pH optimum between pH 5.6–7.5, 
while HaeB and HaeD had the highest activity at the most alkaline pH 
tested (pH 7.5). HaeA had a clear optimum at pH 6.0. 

Monosaccharide deacetylation 
Release of acetyl groups from different acetylated monosaccharides 

was analyzed at neutral pH (Fig. 3). All four enzymes were active on 
xylose tetraacetate, although the activity of HaeC is significantly lower 
than that of the others. Activity on glucose and mannose pentaacetate 
was only detected for HaeA and HaeD. 

Activity on acetylated poly- and oligosaccharides 
Activity of the enzymes was tested against polymeric acetylated 

spruce galactoglucomannan and oligosaccharides derived from it using 
A. niger endomannanase and C. fimi β-mannosidase, to ensure that some 
of the O-acetyl groups are located on the mannosyl residue at the non- 
reducing-end, and on acetylated eucalyptus xylooligosaccharides with 
and without pre-treatment with an A. aculeatus GH10 endoxylanase, 
which also leaves acetylation at the non-reducing end. 

HaeA appears to be a general acetyl esterase that acts equally well on 
mannan, mannooligosaccharides and xylooligosaccharides, releasing in 
all cases 70–80% of the acetyl groups (Fig. 4A), and was the only enzyme 
releasing acetyl groups from konjac glucomannan (Fig. 4B). In contrast, 
HaeC is an acetyl xylan esterase. Although HaeD shares the highest 
sequence similarity with HaeC and also preferred xylan oligosaccharides 
as a substrate, it had a lower efficiency and was more sensitive to the 
length of the xylan oligosaccharides, similar to that reported for T. reesei 
CE16 [51], which is in the same Clade as HaeC and HaeD. HaeC and 
HaeD also deacetylated galactoglucomannan and man
nooligosaccharides, but to a much lower degree than HaeA. HaeB per
formed poorly on all substrates. No significant activity was observed for 
any of the enzymes on acetylated pectin, as only 1% or less of acetyl 
groups were released (data not shown). 

Detailed analysis of the specificity of HaeA 

HaeA was selected and purified (Suppl. Fig. 3) for more detailed 
characterization as a broad-specificity hemicellulose acetyl esterase. 

Deacetylation of konjac glucomannan 
For many years, konjac glucomannan (KGM) has been reported to be 

acetylated, but with no consistent agreement about at which position. 
Recent studies indicated mannose and glucose as the main components 
of KGM in a molar ratio of 1.41 and the intact KGM shows low resolution 
1H NMR signals around 2 ppm attributable to acetylation [48,49]. 
Enzymatically hydrolyzed samples combined with NMR spectroscopy 
and mass spectrometry were used to examine further the fine structure. 
Almost equal amounts of O-acetyl groups were found at O-2 and O-3 
positions of mannose residues, with no acetylation of glucose residues. A 
second paper also reported evidence of 2,3-O-diacetylation. However, 
signals were not assigned to the acetyl resonances in these publications. 

Deacetylation of intact KGM was evaluated using 1H NMR spec
troscopy. The free acetate signal increased slowly in a reaction control 
with no enzyme added (Suppl. Fig. 4), but when HaeA was added the 
acetate peak increased rapidly, while simultaneously signals near 2 ppm 
(assigned to acetylation) were reduced to almost zero (Fig. 5A). After 
0.5 h of incubation, acetate was released from KGM and after 24 h the 
acetylation signal was almost undetectable using proton 1H NMR spec
troscopy, correlating with an increase in free acetate. The increase in 
free acetate continued to 48 h, despite the absence of acetylation signals 
at 24 h: this may be attributable to some insoluble KGM in the NMR 
tube, from which additional acetate is released. Consistent with this 
observed deacetylation, an increase of viscosity over time was observed 
when konjac glucomannan was incubated with HaeA (Fig. 5B). 

Deacetylation of xylooligosaccharides 
Deacetylation of xylooligosaccharides was also characterized using 

NMR by monitoring the acetylation signals near 2 ppm (Fig. 6A) in the 
presence and absence of enzyme (Fig. 6B). Peak assignments for acety
lation shown in Fig. 6A are based on previous studies [19,20]. The CE5 
enzyme was included for comparison since it belongs to a different CAZy 
family for which the positional specificity for hemicellulose deacetyla
tion has been well described previously [14,19]. 

Although HaeA did not fully de-acetylate some positions on the 
xylooligosaccharides, the intensities of all peaks decreased to some 
extent (Fig. 6B). Singly-substituted positions 2 (2-Ac) and 3 (3-Ac) were 
deacetylated slowly in comparison with the CE5 enzyme (Fig. 6B). After 
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about a week of incubation (6 days), the CE5 acetyl xylan esterase 
accumulated > 5–6-fold more free acetate due to much more extensive 
deacetylation at positions 2 and 3. HaeA deacetylates doubly-acetylated 
xylose units, at positions 2 and 3 (2,3-diAc), at a rate similar to the CE5 
enzyme (Fig. 6B). Two unidentified peaks around 2.21 and 2.16 ppm, 
which could not be assigned to any structural feature (a and b), remain 
constant when the CE5 control is used but are removed when using HaeA 
protein. 

Deacetylation of xyloglucan oligosaccharides 
Since commercial xyloglucan is usually prepared using methods 

which deacetylate it, xyloglucan oligosaccharides (Fig. 7A) were pre
pared from Arabidopsis thaliana cell wall material using extraction 
methods coupled to oligosaccharide mass profiling. The alcohol insol
uble residues were digested with a GH74 xyloglucanase from Paeniba
cillus sp. to generate xyloglucan oligosaccharides that were subsequently 
incubated with or without HaeA (Fig. 7B). As commonly encountered in 
Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry 
(MALDI-MS), both the acetylated and non-acetylated xyloglucan oligo
saccharides ionized as sodium or potassium adducts (i.e. addition of 23 
(Na+) or 39 (K+) mass units), and were detected using positive ion mode. 
When HaeA was present, xyloglucan oligosaccharides deacetylation by 
HaeA was clearly observed (Fig. 7C). The three acetylated peaks at 1597 
(XLFG), 1451 (XLLG, XXJG and/or XXFG+) and 1435 (XXFG) m/z dis
appeared while corresponding deacetylated peaks (e.g. at 1409 and 
1393 m/z) increased in abundance. In addition, the ion related to XXLG/ 
XLXG increased highly in intensity in the presence of the higher enzyme 
amount (data shows only the highest concentration tested). 

Discussion 

Acetyl esterases are involved in degradation of various plant biomass 
polymers [56] and belong to various CAZy families [10]. While most 
studies describe members of CE1-CE5 and CE16 as acetyl xylan ester
ases, indications exist for a broader role of CE16 acetyl esterases, espe
cially with respect to galactoglucomannan deacetylation [15,24]. Four 
CE16 genes were identified in the gold-standard genome of A. niger [25]. 
One of them (haeB) is the ortholog of a previously published CE16 
esterase from A. niger, which had only been tested on xylan-related 
substrates [17,19]. In the present study, this enzyme performed poorly 
on poly- and oligosaccharide substrates. The distribution of the four 
A. niger CE16 enzymes across three of the four Clades in the phylogenetic 
tree demonstrated the diversity within this species. Two of the A. niger 
proteins (HaeC and HaeD) are members of Clade 3, which also contains 
the published CE16 of T. reesei [14]. Significant expression levels for 
haeC were not detected in any of the tested conditions [28–31], sug
gesting that this could be a pseudogene. However, heterologous pro
duction of HaeC resulted in an active enzyme, and while the activity on 
pNP-acetate was lower than that of the other three enzymes, it was 
comparably active on several other substrates. The other genes were 
expressed during growth on various plant biomass substrates and their 
expression profiles were affected by deletion of transcriptional regula
tors involved in plant biomass degradation by A. niger, such as XlnR 
[53], GaaR [28] and AraR [54], although promoter analysis suggested 
that some of these effects may be indirect. Deletion of CreA [55] resulted 
in increased expression of haeA, haeB and haeD at early time points of 

(caption on next column) 

Fig. 1. Phylogenetic tree of CE16 enzymes from a selection of fungi. The 
displayed tree is a representative tree of a Maximum Likelihood analysis with 
500 bootstraps. Bootstrap values (≥50) at the nodes are values from Maximum 
Likelihood, Neighbor Joining and Minimum Evolution analysis, respectively. 
Four CE1 amino acid sequences were used as an outgroup. Characterized pro
tein of this and other studies are in large bold-face font. Font-colors represent 
the different fungal taxonomic groups: red = Sordariomycetes, pink 
= Leotiomycetes, blue = Eurotiomycetes, orange = Dothidiomycetes, green 
= Agaricomycetes, light blue = Mucoromycetes. 
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growth on wheat bran and sugar beet pulp, which matches the general 
pattern of CreA effects during growth on plant biomass, where the 
largest influence was revealed at early time points [31]. 

Recombinant production of the A. niger CE16 enzymes revealed 
distinct characteristics, such as variation in their pH profile and sub
strate specificity. While all enzymes are active on pNP-acetate and 

Table 1 
Summary of expression profiles of the four A. niger CE16 genes and identification of putative regulator binding sites in their promoters.  

Gene Expressed on 
plant biomass 
substrates 

Regulated 
by XlnR 

XlnR 
binding 
site (s) 

Regulated 
by AraR 

AraR 
binding 
site (s) 

Regulated 
by GaaR 

GaaR 
binding 
site (s) 

Regulated 
by RhaR 

RhaR 
binding 
site (s) 

Regulated 
by CreA 

CreA 
binding 
site (s) 

haeA yes yes yes yes/no no yes no no no yes yes 
haeB yes yes no yes no yes no no no yes yes 
haeC no n/a yes n/a no n/a yes n/a yes n/a yes 
haeD yes yes no yes/no yes yes no no yes yes yes  

Fig. 2. Characterization of the activity of the four HAEs from A. niger. A. Specific activities of the enzymes on pNP-acetate determined in 20 mM HEPES with 
100 mM NaCl at pH 7.2. Protein concentration of all enzyme preparations was ~0.2 µg/mL. Data was obtained from triplicate averages ± SEM. B. pH-activity 
profiles on pNP-acetate using McIlvain’s buffer with no salt. Data was obtained from duplicate averages. 

Fig. 3. Deacetylation of monosaccharides. Three acetylated single sugars were tested as substrates for the A. niger HAEs. The values at the y-axis represent the 
absorbance ratio at 432/616 nm that was determined (triplicate ± SEM) for each HAE over three days with daily measurements (indicated by the different color 
bars). Error bars indicate SEM of triplicate reactions. 

Fig. 4. Deacetylation of poly- and oligosaccharides. A. Galactoglucomannan (AcGGM) and AcGGM derived oligosaccharides (AcGGMOS), acetylated Eucalyptus 
xylooligosaccharides (EAcXOS) and EAcXOS pre-treated with a GH10 endoxylanase (AcXOS+XYN) were tested as substrates for the different A. niger supernatants. 
The percentage of acetate released (triplicate ± SEM) for each supernatant is given. B. Absorbance ratio at 432/616 nm was registered (triplicate ± SEM) for each 
supernatant and 1% konjac glucomannan for three days with daily measurements (indicated by the different color bars). 
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xylose tetraacetate, activity on glucose pentaacetate and mannose pen
taacetate was only observed for HaeA and HaeD. HaeA had the highest 
activity on galactoglucomannan and oligosaccharides derived from this 
polymer, while it shared the highest activity on xylooligosaccharides 
with HaeC. The activity of CE16 enzymes on xylooligosaccharides has 
been described before [2] and has been the main focus in more recent 
studies [14,15,17,20]. Activity on galactoglucomannan was reported 
previously for a CE16 enzyme of M. thermophila [15], but esterase ac
tivity on galactoglucomannan was already reported much earlier for a 
purified enzyme from Aspergillus [57]. Comparison of the N-terminal 
amino acid sequence of this enzyme (XEXTTTNPTYFFTD) [58] to the 
A. oryzae genome, corresponded to a gene that was suggested to be an 
galactomannan acetyl esterase in a transcriptomic study [24], and which 
interestingly is the ortholog of A. niger HaeA. Both previous studies re
ported that Clade 1 CE16s are more active towards acetylated gal
actoglucomannans than glucuronoxylan, as was also noted for Clade 1 
HaeA in the present study. HaeD activity on acetylated mannose, 
glucose as well as on short glucomannooligosaccharides matches the 
T. reesei CE16 from the same Clade 3 [14]. 

Surprisingly, no activity was detected on acetylated pectin, despite 
indications from the expression profile that the genes may be part of the 
pectinolytic system of A. niger. A recent study, in which machine 
learning was used as a tool to identify novel pectinases in A. niger, 
suggested that there is high probability for haeA and haeB of being 
pectinase encoding genes [59]. A previous study reported a pectin acetyl 
esterase from Aspergillus aculeatus with a MW of around 40 kDa that is 
active on partially degraded pectin, but not on intact pectin and was 
specific for the rhamnified regions of pectin [60]. The predicted MW of 
HaeA and HaeB are 34 and 40 kDa, respectively, and the A. aculeatus 
genome contains orthologs for haeA, haeB and haeD. It would therefore 
be interesting to explore further the activity of HaeA and HaeB on 
pectin-oligosaccharides, but unfortunately the substrate used in the 

A. aculeatus study [60] was not available. 
Considering the high activity and broad specificity, and because this 

enzyme had not been characterized before, the specificity and product 
profile of A. niger HaeA were analyzed in more detail. Overall, the ac
tivity of purified HaeA with xylooligosaccharides is comparable to 
published CE16s, particularly Clade 1 enzymes from P. anserina and 
M. thermophila, which both are active on polymeric xylan [15,20]. 
T. reesei CE16 (Clade 3) is not active on polymeric or oligomeric xylan 
[51], but removes primarily one acetyl group from the non-reducing end 
of xylooligosaccharides, acting as exo-deacetylase [14,16]. HaeA does 
not show preference for positions 2 or 3, while preference for position 3 
over position 2 was reported for T. reesei CE16 [17,51]. This enzyme is 
more similar to A. niger HaeC and HaeD as they all belong to Clade 3, 
suggesting a different preference for these two Clades. 1H NMR showed 
that HaeA was also active on doubly acetylated xylose residues (2, 
3-diAc), like the CE16 enzymes from P. anserina, M. thermophila and 
A. niger [17,20]. This feature, under the tested experimental conditions, 
was also observed with the CE5 control enzyme, as expected from the 
literature [19]. 

Incubations of HaeA with (galacto)glucomannans resulted in effec
tive deacetylation of spruce galactoglucomannans and konjac gluco
mannan. KGM has been shown previously to be acetylated 
predominantly at position 2-O and 3-O of mannose residues, with some 
2,3 Ac-diacetylation, so the positional specificity of the enzymes appears 
to be similar between the two substrates, although rates of decetylation 
of individual positions could not be determined in KGM. 

Xyloglucan oligosaccharides were also generated and detected here 
using the previously-described oligosaccharides mass profiling tech
nique [61], by a biochemical digestion of Arabidopsis cell walls with 
xyloglucanase. The resulting mixture was then used as substrate for 
HaeA and analyzed by MALDI-MS. Results showed that four 
Na+-carbohydrate ions were frequently detected in Arabidopsis 

Fig. 5. Activity of HaeA on konjac glucomannan. A. Nuclear magnetic resonance analysis of konjac glucomannan deacetylation by A. niger HaeA. Reactions were 
conducted in duplicate and single plots represent the same tube in time. Peaks assigned to D2O, acetyl groups and acetate are shown with labels. The structure of 
konjac glucomannan shown at the top of the figure was obtained from http://www.cybercolloids.net/. Substrate in buffer with no enzyme (used as a control) and 
another HaeA independent condition are shown in Suppl. Fig. 4B. Viscometry analysis of the effect of HaeA on konjac glucomannan. 
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oligosaccharides mass profiling: XXXG; XXLG/XLXG; XXFG and XLFG. 
The last three are usually present (and detected) in their acetylated 
forms in Arabidopsis oligosaccharides mass profiling [62], but under the 
conditions used here the acetyl-substituted forms of XXLG/XLXG 
(XXLG/XLXG) were not detected, and only XXFG and XLFG were iden
tified. Another ion, the mass of which fits with oligosaccharides 
XLLG/XXJG (1409 m/z, M+Na+) was also detected. This ion was pre
viously observed in root xyloglucan oligosaccharides mass profiles [63, 
64]. Acetylated forms of XLLG/XXJG were also detected (peak 
1451 m/z). When this mixture of XGs was treated with HaeA, the acet
ylated forms of XLFG, XLLG/XXJG and XXFG disappeared, and although 
the acetylated forms of XXLG/XLXG were not detected, the relative peak 
intensity attributed to their de-acetylated forms increased in a 
concentration-dependent manner. However, it is important to point out 
that the peak intensities cannot be used in a quantitative way under the 
conditions of these experiments, so more rigorous techniques will be 
needed in future to quantify and compare this process between different 
enzymes. As far as we are aware, this is the first report showing xylo
glucan oligosaccharide deacetylation activity in fungal or bacterial 
CAZy CE families. 

Conclusions 

CE16 acetyl esterases are a relatively new CAZy enzyme family, 
which have been mainly evaluated for their activity on xylan-related 
substrates. Here the four CE16 members of A. niger NRRL3 were char
acterized and differences in their sequence, expression profile and 
biochemical properties were demonstrated. Clade 1 enzymes have a 
broad substrate specificity, acting on xylan, galactomannan and xylo
glucan, while the enzymes from Clade 2 and 3 are active on xylan, but 
have only low activity on galactomannan. When the present data is 
combined with that of other characterized CE16 enzymes, it is also clear 
that the Clades differ in the positions on xylo-oligosaccharides from 
which they can remove acetyls. Despite these differences, all four en
zymes were defined as hemicellulose acetyl esterases, to differentiate 
them from the previously described acetylxylan esterases in other CAZy 
families. The broad specificity of HaeA makes this a highly attractive 
enzyme for various biotechnological applications. 
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