2,707 research outputs found

    Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures

    Full text link
    We show that large amplitude, coherent acoustic phonon wavepackets can be generated and detected in Inx_xGa1x_{1-x}N/GaN epilayers and heterostructures in femtosecond pump-probe differential reflectivity experiments. The amplitude of the coherent phonon increases with increasing Indium fraction xx and unlike other coherent phonon oscillations, both \textit{amplitude} and \textit{period} are strong functions of the laser probe energy. The amplitude of the oscillation is substantially and almost instantaneously reduced when the wavepacket reaches a GaN-sapphire interface below the surface indicating that the phonon wavepackets are useful for imaging below the surface. A theoretical model is proposed which fits the experiments well and helps to deduce the strength of the phonon wavepackets. Our model shows that localized coherent phonon wavepackets are generated by the femtosecond pump laser in the epilayer near the surface. The wavepackets then propagate through a GaN layer changing the local index of refraction, primarily through the Franz-Keldysh effect, and as a result, modulate the reflectivity of the probe beam. Our model correctly predicts the experimental dependence on probe-wavelength as well as epilayer thickness.Comment: 11 pages, 14 figure

    Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus

    Get PDF
    Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments

    Impacts of aquatic walking on arterial stiffness, exercise tolerance, and physical function in patients with peripheral artery disease: a randomized clinical trial

    Get PDF
    Peripheral artery disease (PAD) is an atherosclerotic disease that is associated with attenuated vascular function, cardiorespiratory capacity, physical function, and muscular strength. It is essential to combat these negative effects on health by incorporating lifestyle interventions to slow disease progression, such as exercise. We sought to examine the effects of aquatic walking exercise on cardiovascular function, cardiorespiratory capacity [maximal volume of oxygen consumption (V̇o2max)], exercise tolerance [6-min walking distance (6MWD)], physical function, muscular strength, and body composition in patients with PAD. Patients with PAD (n = 72) were recruited and randomly assigned to a 12-wk aquatic walking training group (AQ, n = 35) or a control group (CON, n = 37). The AQ group performed walking and leg exercises in waist-to-chest-deep water. Leg arterial stiffness [femoral-to-ankle pulse wave velocity (legPWV)], heart rate (HR), blood pressure (BP), ankle-to-brachial index (ABI), V̇o2max, 6MWD, physical function, muscular strength, body composition, resting metabolic rate (RMR), and flexibility were measured before and after 12 wk. There were significant group × time interactions (P \u3c 0.05) after 12 wk for legPWV and HR, which significantly decreased (P \u3c 0.05) in AQ, and V̇o2max, 6MWD, physical function, and muscular strength, which significantly increased (P \u3c 0.05) in AQ, compared with no changes in CON. There were no significant differences (P \u3e 0.05) for BP, ABI, RMR, or flexibility after 12 wk. Interestingly, there was relatively high adherence (84%) to the aquatic walking exercise program in this population. These results suggest that aquatic walking exercise is an effective therapy to reduce arterial stiffness and resting HR and improve cardiorespiratory capacity, exercise tolerance, physical function, and muscular strength in patients with PAD

    Optimizing infrared to near infrared upconversion quantum yield of β-NaYF<sub>4</sub>:Er<sup>3+</sup> in fluoropolymer matrix for photovoltaic devices

    Get PDF
    The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm−2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W−1 and 0.67 ± 0.10 cm2 W−1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism

    Precise determination of equilibrium sulfur isotope effects during volatilization and deprotonation of dissolved H_2S

    Get PDF
    Sulfide (H_2S, HS^−, and S^(2−)) is ubiquitous in marine porewaters as a result of microbial sulfate reduction, constituting the reductive end of the biogeochemical sulfur cycle. Stable isotopes have been widely used to constrain the sulfur cycle, because the redox transformations of sulfur compounds, such as microbial sulfate reduction, often exhibit sizable kinetic isotope effects. In contrast to sulfate ion (SO_4^(2−)), the most abundant form of dissolved sulfur in seawater, H2S is volatile and also deprotonated at near neutral pH. Equilibrium isotope partitioning between sulfide species can therefore overlap with kinetic isotope effects during reactions involving sulfide as either reactant or intermediate. Previous experimental attempts to measure equilibrium fractionation between H_2S and HS− have reached differing results, likely due to solutions of widely varying ionic strength. In this study, we measured the sulfur isotope fractionation between total dissolved sulfide and gaseous H2S at 20.6 ± 0.5 °C over the pH range from 2 to 8, and calculated the equilibrium isotope effects associated with deprotonation of dissolved H_2S. By using dilute solutions of Na2S, made possible by the improved sensitivity of mass spectrometric techniques, uncertainty in the first dissociation constant of H2S due to ionic strength could be better controlled. This in turn allowed us to close sulfur isotope mass balance for our experiments and increase the accuracy of the estimated fractionation factor. At equilibrium, aqueous H2S was enriched in ^(34)S by 0.7‰ and 3.1‰ relative to gaseous H_2S and aqueous HS−, respectively. The estimated fractionation between aqueous H_2S and HS^− lies between two earlier experimental reports, but agrees within the uncertainty of the measurements with a recent theoretical calculation

    Tuning magnetic chirality by dipolar interactions

    Get PDF
    Chiral magnetism has gained enormous interest in recent years because of the anticipated wealth of applications in nanoelectronics. The demonstrated stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis. We further show that the competition between the Dzyaloshinskii-Moriya and dipolar interactions can reverse the domain-wall chirality. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism

    Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    Get PDF
    Citation: Benoit, I., Zhou, M. M., Duarte, A. V., Downes, D. J., Todd, R. B., Kloezen, W., . . . de Vries, R. P. (2015). Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Scientific Reports, 5(1), 1-13. https://doi.org/10.1038/srep13592Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments

    CLIC: a pogram on cultivating true leadership

    Get PDF
    12 May 2012. A Program on cultivating true leadership skills helped participants became more effective team members. Solving jigsaw puzzles using leaders’ portraits, putting leader related situations into drawings, stepping oneself into a leader’s shoe and playing games involving teamworking and leadership values were among the activities enjoyed by the participants of the CLIC program (Contemporary Leadership in Community)

    Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway

    Get PDF
    Microbial sulfate reduction exhibits a normal isotope effect, leaving unreacted sulfate enriched in ^(34)S and producing sulfide that is depleted in ^(34)S. However, the magnitude of sulfur isotope fractionation is quite variable. The resulting changes in sulfur isotope abundance have been used to trace microbial sulfate reduction in modern and ancient ecosystems, but the intracellular mechanism(s) underlying the wide range of fractionations remains unclear. Here we report the concentrations and isotopic ratios of sulfur metabolites in the dissimilatory sulfate reduction pathway of Desulfovibrio alaskensis. Intracellular sulfate and APS levels change depending on the growth phase, peaking at the end of exponential phase, while sulfite accumulates in the cell during stationary phase. During exponential growth, intracellular sulfate and APS are strongly enriched in ^(34)S. The fractionation between internal and external sulfate is up to 49‰, while at the same time that between external sulfate and sulfide is just a few permil. We interpret this pattern to indicate that enzymatic fractionations remain large but the net fractionation between sulfate and sulfide is muted by the closed-system limitation of intracellular sulfate. This ‘reservoir effect’ diminishes upon cessation of exponential phase growth, allowing the expression of larger net sulfur isotope fractionations. Thus, the relative rates of sulfate exchange across the membrane versus intracellular sulfate reduction should govern the overall (net) fractionation that is expressed. A strong reservoir effect due to vigorous sulfate reduction might be responsible for the well-established inverse correlation between sulfur isotope fractionation and the cell-specific rate of sulfate reduction, while at the same time intraspecies differences in sulfate uptake and/or exchange rates could account for the significant scatter in this relationship. Our approach, together with ongoing investigations of the kinetic isotope fractionation by key enzymes in the sulfate reduction pathway, should provide an empirical basis for a quantitative model relating the magnitude of microbial isotope fractionation to their environmental and physiological controls
    corecore