204 research outputs found

    Modeling on Stress Evolution of Step Part for Casting-heat Treatment Processes

    Get PDF
    AbstractHeat treatment usually follows the casting process to improve the physical properties of parts. Under the strong assumption that casting has no effect on the following heat treatment, the modeling of heat treatment process is currently based on ideal material conditions with zero residual stress and uniform properties. In this paper, residual stress generated by casting has been introduced as the initial conditions for a heat treated step part of 4140 steel. The results have been compared with that of no consideration about initial residual stresses of casting

    Ca/Al of plagioclase-hosted melt inclusions as an indicator for post-entrapment processes at mid-ocean ridges?

    Get PDF
    The composition of melt inclusions in basalts erupted at mid-ocean ridges may be modified by post-entrapment processes, so the present composition of melt inclusions may not represent their original composition at the time of entrapment. By combining the melt inclusion composition in samples from the South Mid-Atlantic Ridge at 19ºS analyzed in this study, and from the Petrological Database, we found that post-entrapment crystallization processes resulted in higher Ca/Al, Mg#[100°—atomic Mg2+/(Mg2++Fe2+)], MgO and FeO contents, and lower CaO and Al2O3 contents of plagioclase-hosted melt inclusions relative to those hosted in olivine. In addition, melt inclusions hosted in plagioclase with anorthite content larger than 80mol.% had been modified more readily than others. By discussing the relationships between Ca/Al and fractional crystallization, post-entrapment crystallization, and the original melt composition, we propose that Ca/Al can be regarded as an indicator of the effect of post-entrapment processes on melt inclusion composition. Specifically, i) when Ca/Al<0.78, melt inclusion compositions corrected for fractional crystallization to Mg#=72 can represent the primary magma at mid-ocean ridges; ii) when 0.78<Ca/Al<1.0, melt inclusions are mainly modified by post-entrapment crystallization effects, and can reveal the original melt composition after correcting for these effects; iii) when Ca/Al>1.0, the compositions of melt inclusions do not reflect the original melt composition nor preserve information about the mantle source. According to these criteria, plagioclase-hosted melt inclusions with Ca/Al>1.0 in basalts from the South Mid-Atlantic Ridge at 19ºS cannot represent the composition of the melt at the moment of their entrapment

    Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia

    Get PDF
          Bulk aerosol samples were collected from 16 July 2008 to 26 July 2009 at Lulang, a high-altitude (>3300m above sea level) site on the southeast Tibetan Plateau (TP); objectives were to determine chemical characteristics of the aerosol and identify its major sources. We report aerosol (total suspended particulate, TSP) mass levels and the concentrations of selected elements, carbonaceous species, and water-soluble inorganic ions. Significant buildup of aerosol mass and chemical species (organic carbon, element carbon, nitrate, and sulfate) occurred during the premonsoon, while lower concentrations were observed during the monsoon. Seasonal variations in aerosol and chemical species were driven by precipitation scavenging and atmospheric circulation. Two kinds of high-aerosol episodes were observed: one was enriched with dust indicators (Fe and Ca2+), and the other was enhanced with organic and elemental carbon (OC and EC), SO42−, NO3−, and Fe. The TSP loadings during the latter were 3 to 6 times those on normal days. The greatest aerosol optical depths (National Centers for Environmental Protection/National Center for Atmospheric Research reanalysis) occurred upwind, in eastern India and Bangladesh, and trajectory analysis indicates that air pollutants were transported from the southwest. Northwesterly winds brought high levels of natural emissions (Fe, Ca2+) and low levels of pollutants (SO42−, NO3−, K+, and EC); this was consistent with high aerosol optical depths over the western deserts and Gobi. Our work provides evidence that both geological and pollution aerosols from surrounding regions impact the aerosol population of the TP

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic

    Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area

    Get PDF
    The energy and water cycle over the Tibetan Plateau play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Using field observational data observed from the GAME/Tibet (GEWEX (Global Energy and Water cycle Experiment) Asian Monsoon Experiment on the Tibetan Plateau) and the CAMP/Tibet (CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau), some results on the local surface energy partitioning (diurnal variation, inter-monthly variation and vertical variation etc.) are presented in this study. The study on the regional surface energy partitioning is of paramount importance over heterogeneous landscape of the Tibetan Plateau and it is also one of the main scientific objectives of the GAME/Tibet and the CAMP/Tibet. Therefore, the regional distributions and their inter-monthly variations of surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) are also derived by combining NOAA-14/AVHRR data with field observations. The derived results were validated by using the ground truth, and it shows that the derived regional distributions and their inter-monthly variations of land surface heat fluxes are reasonable by using the method proposed in this study. Further improvement of the method and its applying field were also discussed

    Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter

    Full text link
    The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism, Sol. Phy

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    EGFR L858R Mutation and Polymorphisms of Genes Related to Estrogen Biosynthesis and Metabolism in Never-Smoking Female Lung Adenocarcinoma Patients

    Get PDF
    Purpose: To assess whether polymorphisms of genes related to estrogen biosynthesis and metabolism are associated with EGFR mutations. Experimental Design: We studied 617 patients with lung adenocarcinoma, including 302 never-smoking women. On the basis of multiple candidate genes approach, the effects of polymorphisms of CYP17, CYP19A1, ER alpha, and COMT in association with the occurrence of EGFR mutations were evaluated using logistic regression analysis. Results: In female never-smokers, significant associations with EGFR L858R mutation were found for the tetranucleotide (TTTA)(n) repeats in CYP19A1 (odds ratio, 2.6; 95%CI, 1.2-5.7 for 1 or 2 alleles with (TTTA)(n) repeats > 7 compared with both alleles with (TTTA) n repeats <= 7), and the rs2234693 in ERa (OR, 2.1; 95% CI, 1.1-4.0 for C/T and C/C genotypes compared with T/T genotype). The C/C genotype (vs. T/T genotype) of ERa was significantly associated with EGFR L858R mutation (OR, 3.0; 95% CI, 1.1-8.1), in-frame deletion (OR, 2.9; 95% CI, 1.1-7.6) and other mutations (OR, 4.3; 95% CI, 1.3-14.0). The genotype of COMT rs4680 was significantly associated with EGFR L858R mutation in female and male never-smokers showing OR's (95% CI) of 1.8 (1.0-3.2) and 3.6 (1.1-11.3), respectively, for genotypes G/A and G/G compared with genotype A/A. The number of risk alleles of CYP17, CYP19A1, ERa, and COMT was associated with an increasing OR of EGFR L858R mutation in female never-smokers (P = 0.0002 for trend). Conclusions: The L858R mutation of EGFR is associated with polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. Clin Cancer Res; 17(8); 2149-58. (C) 2011 AACR

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant
    corecore