2,745 research outputs found

    The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer.

    Get PDF
    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa

    Controlled Optimal Design Program for the Logit Dose Response Model

    Get PDF
    The assessment of dose-response is an integral component of the drug development process. Parallel dose-response studies are conducted, customarily, in preclinical and phase 1, 2 clinical trials for this purpose. Practical constraints on dose range, dose levels and dose proportions are intrinsic issues in the design of dose response studies because of drug toxicity, efficacy, FDA regulations, protocol requirements, clinical trial logistics, and marketing issues. We provide a free on-line software package called Controlled Optimal Design 2.0 for generating controlled optimal designs that can incorporate prior information and multiple objectives, and meet multiple practical constraints at the same time. Researchers can either run the web-based design program or download its stand-alone version to construct the desired multiple-objective controlled Bayesian optimal designs. Because researchers often adopt ad-hoc design schemes such as the equal allocation rules without knowing how efficient such designs would be for the design problem, the program also evaluates the efficiency of user-supplied designs

    Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe

    Get PDF
    We developed a technique for electrochemical detection of salivary mRNA employing a hairpin probe (HP). Steric hindrance (SH) suppresses unspecific signal and generates a signal-on amplification process for target detection. The stem-loop configuration brings the reporter end of the probe into close proximity with the surface and makes it unavailable for binding with the mediator. Target binding opens the hairpin structure of the probe, and the mediator can then bind to the accessible reporter. Horseradish peroxidase is utilized to generate electrochemical signal. This signal-on process is characterized by a low basal signal, a strong positive readout and a large dynamic range. The SH is controlled via hairpin design and electrical field. By applying electric field control to HPs, the limit of detection of RNA is about 0.4 fM, which is 10 000-fold more sensitive than conventional linear probes. Endogenous Interleukin-8 mRNA is detected with the HP, and good correlation with the quantitative PCR technique is obtained. The resultant process allows a simple setup and by reducing the number of steps it is suited for the point-of-care detection of specific nucleic acid sequences from complex body fluids such as saliva

    Pre-service teachers' reflection in reading of literary texts in weblogs

    Get PDF
    This qualitative study examines twenty-five preservice English language teachers' reflective level in their reading of literary texts. 189 weblog entries were analysed. The five levels of reflection identified were Identification, Association, Integration, Analysis, and Transformation, with Identification and Association levels considered a 'surface learning' while the remaining three as 'deep learning'. The results indicated while the percentage of reflection at all levels was almost equally distributed, the combined percentage of the 'deep learning' constituted almost seventy percentage of the total number of weblog entries. This outcome indicated that weblogs were useful for reflection of reading literary texts

    Design and implementation of a real-time global tone mapping processor for high dynamic range video

    Get PDF
    ABSTRACT As the development in high dynamic range (HDR

    (Z)3,4,5,4'-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level.

    Get PDF
    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4′-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients
    corecore