2,110 research outputs found

    Mind2Web: Towards a Generalist Agent for the Web

    Full text link
    We introduce Mind2Web, the first dataset for developing and evaluating generalist agents for the web that can follow language instructions to complete complex tasks on any website. Existing datasets for web agents either use simulated websites or only cover a limited set of websites and tasks, thus not suitable for generalist web agents. With over 2,000 open-ended tasks collected from 137 websites spanning 31 domains and crowdsourced action sequences for the tasks, Mind2Web provides three necessary ingredients for building generalist web agents: 1) diverse domains, websites, and tasks, 2) use of real-world websites instead of simulated and simplified ones, and 3) a broad spectrum of user interaction patterns. Based on Mind2Web, we conduct an initial exploration of using large language models (LLMs) for building generalist web agents. While the raw HTML of real-world websites are often too large to be fed to LLMs, we show that first filtering it with a small LM significantly improves the effectiveness and efficiency of LLMs. Our solution demonstrates a decent level of performance, even on websites or entire domains the model has never seen before, but there is still a substantial room to improve towards truly generalizable agents. We open-source our dataset, model implementation, and trained models (https://osu-nlp-group.github.io/Mind2Web) to facilitate further research on building a generalist agent for the web.Comment: website: https://osu-nlp-group.github.io/Mind2We

    Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring.

    Get PDF
    The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research

    Cardiovascular Risk Assessment with Vascular Function, Carotid Atherosclerosis and the UKPDS Risk Engine in Korean Patients with Newly Diagnosed Type 2 Diabetes

    Get PDF
    BackgroundPatients with type 2 diabetes have an increased risk of cardiovascular disease. Few studies have evaluated the cardiovascular disease (CVD) risk simultaneously using the United Kingdom Prospective Diabetes Study (UKPDS) risk engine and non-invasive vascular tests in patients with newly diagnosed type 2 diabetes.MethodsParticipants (n=380; aged 20 to 81 years) with newly diagnosed type 2 diabetes were free of clinical evidence of CVD. The 10-year coronary heart disease (CHD) and stroke risks were calculated for each patient using the UKPDS risk engine. Carotid intima media thickness (CIMT), flow mediated dilation (FMD), pulse wave velocity (PWV) and augmentation index (AI) were measured. The correlations between the UKPDS risk engine and the non-invasive vascular tests were assessed using partial correlation analysis, after adjusting for age, and multiple regression analysis.ResultsThe mean 10-year CHD and 10-year stroke risks were 14.92±11.53% and 4.03±3.95%, respectively. The 10-year CHD risk correlated with CIMT (P<0.001), FMD (P=0.017), and PWV (P=0.35) after adjusting for age. The 10-year stroke risk correlated only with the mean CIMT (P<0.001) after adjusting for age. FMD correlated with age (P<0.01) and systolic blood pressure (P=0.09). CIMT correlated with age (P<0.01), HbA1c (P=0.05), and gender (P<0.01).ConclusionThe CVD risk is increased at the onset of type 2 diabetes. CIMT, FMD, and PWV along with the UKPDS risk engine should be considered to evaluate cardiovascular disease risk in patients with newly diagnosed type 2 diabetes

    Effectiveness of interventions to promote healthy diet in primary care: systematic review and meta-analysis of randomised controlled trials

    Get PDF
    Background A diet rich in fruit, vegetables and dietary fibre and low in fat is associated with reduced risk of chronic disease. This review aimed to estimate the effectiveness of interventions to promote healthy diet for primary prevention among participants attending primary care.&lt;p&gt;&lt;/p&gt; Methods A systematic review of trials using individual or cluster randomisation of interventions delivered in primary care to promote dietary change over 12 months in healthy participants free from chronic disease or defined high risk states. Outcomes were change in fruit and vegetable intake, consumption of total fat and fibre and changes in serum cholesterol concentration.&lt;p&gt;&lt;/p&gt; Results Ten studies were included with 12,414 participants. The design and delivery of interventions were diverse with respect to grounding in behavioural theory and intervention intensity. A meta-analysis of three studies showed an increase in fruit consumption of 0.25 (0.01 to 0.49) servings per day, with an increase in vegetable consumption of 0.25 (0.06 to 0.44) serving per day. A further three studies that reported on fruit and vegetable consumption together showed a pooled increment of 0.50 (0.13 to 0.87) servings per day. The pooled effect on consumption of dietary fibre, from four studies, was estimated to be 1.97 (0.43 to 3.52) gm fibre per day. Data from five studies showed a mean decrease in total fat intake of 5.2% of total energy (1.5 to 8.8%). Data from three studies showed a mean decrease in serum cholesterol of 0.10 (-0.19 to 0.00) mmol/L.&lt;p&gt;&lt;/p&gt; Conclusion Presently-reported interventions to promote healthy diet for primary prevention in primary care, which illustrate a diverse range of intervention methods, may yield small beneficial changes in consumption of fruit, vegetables, fibre and fat over 12 months. The present results do not exclude the possibility that more effective intervention strategies might be developed.&lt;p&gt;&lt;/p&gt

    Quality assurance in the HIV/AIDS laboratory network of China

    Get PDF
    Background In 2009, there were 8273 local screening laboratories, 254 confirmatory laboratories, 35 provincial confirmatory central laboratories and 1 National AIDS Reference Laboratory (NARL) in China. These laboratories were located in Center for Disease Control and Prevention (CDC) facilities, hospitals, blood donation clinics, maternal and child health (MCH) hospitals and border health quarantine health-care facilities

    Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion

    Get PDF
    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    The momentum-resolved and time-resolved two-color optical coherence absorption spectrum in the scattering process

    Full text link
    The two-color optical coherence absorption spectrum (QUIC-AB) of GaAs quantum well in the presence of a charge current is investigated. We find that the QUIC-AB depends strongly not only on the amplitude of the electron current but also on the direction of the electron current. Thus, the amplitude and the angular distribution of scattering current in the scatter process can be detected directly in real time with the QUIC-AB. The phase shift of scattered waves and the details of the scattering potential can also be determined.Comment: 5page 3figure
    corecore