328 research outputs found

    Laboratory Evaluation of Flurox, a Chitin Synthesis Inhibitor, on the Termite, Microcerotermes diversus

    Get PDF
    Microcerotermes diversus (Silvestri) (Isoptera: Termitidae) is the most economically destructive termite in structures in southwest Iran. One sustainable control strategy that usually helps to reduce subterranean termite damage in buildings, is the use of insect growth regualtors in a suitable bait matrix that are safe to the user and the environment. In the laboratory assays described here, the delayed toxicity of Flurox, a chitin synthesis inhibitor, to M. diversus was evaluated under force-feeding and choice trials. Flurox induced worker and nymph mortality and incomplete ecdysis in nymphs of M. diversus under no-choice and two-choice feeding tests. These adverse effects may cause disruption of the caste balance in M. diversus, leading to the collapse of the colony. These assays determined concentrations of Flurox that can be used in bait formulations

    Molecular Characterization of High and Low Virulent Escherichia coli Clinical Strains Isolated from Patients with Urinary Tract Infections with or without Bacteremia in Southern Taiwan

    Get PDF
    Chih-Yen Hsiao,1 Yi-Chien Lee,2,3 Douglas JH Shyu,4 Che-Ping Su,5 Man-Yi Lin,5 Nai-Yu Guo,6 Cheng-Lun Chiang,1 Yih-Yuan Chen5 1Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan; 2Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; 3School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; 4Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan; 5Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan; 6Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, TaiwanCorrespondence: Yih-Yuan Chen, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Tel +886-5-271-7795, Email [email protected]: The most common extraintestinal pathogen and infection site is uropathogenic Escherichia coli (UPEC), which causes urinary tract infections (UTIs). UPEC is also a common pathogen in bloodstream infections; in severe cases, it can lead to death. Although host and bacterial virulence factors have been demonstrated to be associated with UTI pathogenesis, the role of the related contributing factors in UTI and urinary source bacteremia is not yet fully understood. This study aimed to compare and analyze the factors contributing to urinary bacteremia in patients with UTI.Methods: A total of 171 E. coli strains collected from patients with UTI and urinary source bacteremia at Chiayi Christian Hospital were used. Phylogenetic groups and virulence factors were determined using PCR. Drug resistance patterns were determined using the disk diffusion assay.Results: Previous studies have demonstrated that fimbriae and papGII may be associated with first-step infections and severe UTIs, respectively. As expected, highly virulent E. coli strains (belonging to the phylogenetic B2 and D groups) were dominant in the bacteremic UTI (90%) and UTI (86.27%) groups. However, our results showed that the UTI group had a significantly higher prevalence of sfa/focDE (belonging to the S and FIC fimbriae) than the bacteremic UTI group (29.4% vs 12.5%; p=0.008). In the bacteremic group, we found that sfa/focDE was only detected in highly virulent strains. The bacteremic UTI group had a significantly higher prevalence of papGII (belonging to P fimbriae) than the UTI group (55.8% vs 37.3%; p=0.026). In addition, the P fimbriae gene cluster, including papC, papEF, and papGII, was predominant in highly virulent strains. Notably, our results show that multidrug-resistant (MDR) strains were significantly less virulent than non MDR strains.Conclusion: Taken together, our results provide insights into the contributing factors in patients with UTI and urinary bacteremia.Keywords: Escherichia coli, urinary tract infection, urinary source bacteremia, virulence factors, multidrug resistanc

    Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin

    Get PDF
    Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression

    Do Termites Avoid Carcasses? Behavioral Responses Depend on the Nature of the Carcasses

    Get PDF
    BACKGROUND: Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe) (lower termites) and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites). We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses) and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1) the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2) the termites repeatedly crawled under the aging carcass piles; and (3) only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature. CONCLUSION: We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species

    Toxicity, Tunneling and Feeding Behavior of the Termite, Coptotermes vastator, in Sand Treated with Oil of the Physic Nut, Jatropha curcas

    Get PDF
    Oil of the physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), was evaluated in the laboratory for its barrier and repellent activity against the Philippine milk termite Coptotermes vastator Light (Isoptera: Rhinotermitidae). The study showed that J. curcas oil had anti-feeding effect, induced reduction in tunneling activity and increased mortality in C. vastator. Behavior of termites exposed to sand treated with J. curcas oil indicated that it is toxic or repellent to C. vastator. Toxicity and repellent thresholds, were higher than those reported for other naturally occurring compounds tested against the Formosan subterranean termite

    Topologically protected localised states in spin chains

    Get PDF
    We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices

    Effects of protein–carbohydrate supplementation on immunity and resistance training outcomes: a double-blind, randomized, controlled clinical trial

    Get PDF
    Purpose: To examine the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on resistance training outcomes, body composition, muscle thickness, blood indices of health and salivary human neutrophil peptides (HNP1-3), as reference of humoral immunity followed an 8-week resistance training program in college athletes. Methods: Twenty-seven recreationally physically active males and females (n = 9 per treatment) were randomly assigned to one of the three groups: hydrolyzed beef protein, whey protein, or non-protein isoenergetic carbohydrate. Treatment consisted of ingesting 20 g of supplement, mixed with orange juice, once a day immediately post-workout or before breakfast on non-training days. Measurements were performed pre- and post-intervention on total load (kg) lifted at the first and last workout, body composition (via plethysmography) vastus medialis thickness (mm) (via ultrasonography), and blood indices of health. Salivary HNP1-3 were determined before and after performing the first and last workout. Results: Salivary concentration and secretion rates of the HNP1-3 decreased in the beef condition only from pre-first-workout (1.90 ± 0.83 μg/mL; 2.95 ± 2.83 μg/min, respectively) to pre-last-workout (0.92 ± 0.63 μg/mL, p = 0.025, d = 1.03; 0.76 ± 0.74 μg/min, p = 0.049, d = 0.95), and post-last-workout (0.95 ± 0.60 μg/mL, p = 0.032, d = 1.00; 0.59 ± 0.52 μg/min, p = 0.027, d = 1.02). No other significant differences between groups were observed. Conclusions: Supplementation with a carbohydrate–protein beverage may support resistance training outcomes in a comparable way as the ingestion of only carbohydrate. Furthermore, the ingestion of 20 g of hydrolyzed beef protein resulted in a decreased level and secretion rates of the HNP1-3 from baseline with no negative effect on blood indices of health

    Transforming growth factor-β-inducible early response gene 1 is a novel substrate for atypical protein kinase Cs

    Get PDF
    The protein kinase C (PKC) family of serine/threonine kinases consists of ten different isoforms grouped into three subfamilies, denoted classical, novel and atypical PKCs (aPKCs). The aPKCs, PKCι/λ and PKCζ serve important roles during development and in processes subverted in cancer such as cell and tissue polarity, cell proliferation, differentiation and apoptosis. In an effort to identify novel interaction partners for aPKCs, we performed a yeast two-hybrid screen with the regulatory domain of PKCι/λ as bait and identified the Krüppel-like factors family protein TIEG1 as a putative interaction partner for PKCι/λ. We confirmed the interaction of both aPKCs with TIEG1 in vitro and in cells, and found that both aPKCs phosphorylate the DNA-binding domain of TIEG1 on two critical residues. Interestingly, the aPKC-mediated phosphorylation of TIEG1 affected its DNA-binding activity, subnuclear localization and transactivation potential

    Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and Aβ Oligomerization

    Get PDF
    Accumulation and deposition of β-amyloid protein (Aβ) are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients

    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.</p> <p>Methods</p> <p>The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth <it>in vivo </it>were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.</p> <p>Results</p> <p>BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.</p> <p>Conclusions</p> <p>These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.</p
    • …
    corecore