353 research outputs found

    Multi-TGDR: a regularization method for multi-class classification in microarray experiments

    Get PDF
    Background With microarray technology becoming mature and popular, the selection and use of a small number of relevant genes for accurate classification of samples is a hot topic in the circles of biostatistics and bioinformatics. However, most of the developed algorithms lack the ability to handle multiple classes, which arguably a common application. Here, we propose an extension to an existing regularization algorithm called Threshold Gradient Descent Regularization (TGDR) to specifically tackle multi-class classification of microarray data. When there are several microarray experiments addressing the same/similar objectives, one option is to use meta-analysis version of TGDR (Meta-TGDR), which considers the classification task as combination of classifiers with the same structure/model while allowing the parameters to vary across studies. However, the original Meta-TGDR extension did not offer a solution to the prediction on independent samples. Here, we propose an explicit method to estimate the overall coefficients of the biomarkers selected by Meta-TGDR. This extension permits broader applicability and allows a comparison between the predictive performance of Meta-TGDR and TGDR using an independent testing set. Results Using real-world applications, we demonstrated the proposed multi-TGDR framework works well and the number of selected genes is less than the sum of all individualized binary TGDRs. Additionally, Meta-TGDR and TGDR on the batch-effect adjusted pooled data approximately provided same results. By adding Bagging procedure in each application, the stability and good predictive performance are warranted. Conclusions Compared with Meta-TGDR, TGDR is less computing time intensive, and requires no samples of all classes in each study. On the adjusted data, it has approximate same predictive performance with Meta-TGDR. Thus, it is highly recommended

    "Harshlighting" small blemishes on microarrays

    Get PDF
    BACKGROUND: Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs). RESULTS: We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. CONCLUSION: Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization

    Harshlight: a "corrective make-up" program for microarray chips

    Get PDF
    BACKGROUND: Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans do show similar artifacts, which might affect subsequent analysis. Although all but the starkest blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs), few tools are available to help with the detection of those defects. RESULTS: We develop a novel tool, Harshlight, for the automatic detection and masking of blemishes in HDONA microarray chips. Harshlight uses a combination of statistic and image processing methods to identify three different types of defects: localized blemishes affecting a few probes, diffuse defects affecting larger areas, and extended defects which may invalidate an entire chip. CONCLUSION: We demonstrate the use of Harshlight can materially improve analysis of HDONA chips, especially for experiments with subtle changes between samples. For the widely used MAS5 algorithm, we show that compact blemishes cause an average of 8 gene expression values per chip to change by more than 50%, two of them by more than twofold; our masking algorithm restores about two thirds of this damage. Large-scale artifacts are successfully detected and eliminated

    Comparing independent microarray studies: the case of human embryonic stem cells

    Get PDF
    BACKGROUND: Microarray studies of the same phenomenon in different labs often appear at variance because the published lists of regulated transcripts have disproportionately small intersections. We demonstrate that comparing studies by intersecting lists in this manner is methodologically flawed by reanalyzing three studies of the molecular signature of "stemness" in human embryonic stem cells. There are only 7 genes common to all three published lists, suggesting disagreement. RESULTS: Carefully reanalyzing all three together from the raw data we detect 111 genes upregulated and 95 downregulated in all three studies. The upregulated list was subject to rtRTPCR analysis and 75% of the genes were confirmed. CONCLUSION: Our findings show that the three studies have a substantial core of common genes, which is missed if only the published lists are examined. Combined analysis of multiple experiments can be a powerful way to distil coherent conclusions

    Evaluation of the Psoriasis Transcriptome across Different Studies by Gene Set Enrichment Analysis (GSEA)

    Get PDF
    Our objective was to develop a consistent molecular definition of psoriasis. There have been several published microarray studies of psoriasis, and we compared disease-related genes identified across these different studies of psoriasis with our own in order to establish a consensus.We present a psoriasis transcriptome from a group of 15 patients enrolled in a clinical study, and assessed its biological validity using a set of important pathways known to be involved in psoriasis. We also identified a key set of cytokines that are now strongly implicated in driving disease-related pathology, but which are not detected well on gene array platforms and require more sensitive methods to measure mRNA levels in skin tissues. Comparison of our transcriptome with three other published lists of psoriasis genes showed apparent inconsistencies based on the number of overlapping genes. We extended the well-established approach of Gene Set Enrichment Analysis (GSEA) to compare a new study with these other published list of differentially expressed genes (DEG) in a more comprehensive manner. We applied our method to these three published psoriasis transcriptomes and found them to be in good agreement with our study.Due to wide variability in clinical protocols, platform and sample handling, and subtle disease-related signals, intersection of published DEG lists was unable to establish consensus between studies. In order to leverage the power of multiple transcriptomes reported by several laboratories using different patients and protocols, more sophisticated methods like the extension of GSEA presented here, should be used in order to overcome the shortcomings of overlapping individual DEG approach

    A Bioequivalence Test by the Direct Comparison of Concentration-versus-Time Curves Using Local Polynomial Smoothers

    Get PDF
    In order to test if two chemically or pharmaceutically equivalent products have the same efficacy and/or toxicity, a bioequivalence (BE) study is conducted. The 80%/125% rule is the most commonly used criteria for BE and states that BE cannot be claimed unless the 90% CIs for the ratio of selected pharmacokinetics (PK) parameters of the tested to the reference drug are within 0.8 to 1.25. Considering that estimates of these PK parameters are derived from the concentration-versus-time curves, a direct comparison between these curves motivates an alternative and more flexible approach to test BE. Here, we propose to frame the BE test in terms of an equivalence of concentration-versus-time curves which are constructed using local polynomial smoother (LPS). A metric is presented to quantify the distance between the curves and its 90% CIs are calculated via bootstrapping. Then, we applied the proposed procedures to data from an animal study and found that BE between a generic drug and its brand name cannot be concluded, which was consistent with the results by applying the 80%/125% rule. However, the proposed procedure has the advantage of testing only on a single metric, instead of all PK parameters

    Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways

    Get PDF
    BACKGROUND: Atopic dermatitis (AD) is a common inflammatory skin disease with limited treatment options. Several microarray experiments have been conducted on lesional/LS and non-lesional/NL AD skin to develop a genomic disease phenotype. Although these experiments have shed light on disease pathology, inter-study comparisons reveal large differences in resulting sets of differentially expressed genes (DEGs), limiting the utility of direct comparisons across studies. METHODS: We carried out a meta-analysis combining 4 published AD datasets to define a robust disease profile, termed meta-analysis derived AD (MADAD) transcriptome. RESULTS: This transcriptome enriches key AD pathways more than the individual studies, and associates AD with novel pathways, such as atherosclerosis signaling (IL-37, selectin E/SELE). We identified wide lipid abnormalities and, for the first time in vivo, correlated Th2 immune activation with downregulation of key epidermal lipids (FA2H, FAR2, ELOVL3), emphasizing the role of cytokines on the barrier disruption in AD. Key AD “classifier genes” discriminate lesional from nonlesional skin, and may evaluate therapeutic responses. CONCLUSIONS: Our meta-analysis provides novel and powerful insights into AD disease pathology, and reinforces the concept of AD as a systemic disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12920-015-0133-x) contains supplementary material, which is available to authorized users

    Molecular and Cellular Profiling of Scalp Psoriasis Reveals Differences and Similarities Compared to Skin Psoriasis

    Get PDF
    Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis in other skin areas. We sought to determine the cellular and molecular phenotype of scalp psoriasis by performing a comparative analysis of scalp and skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement and 10 control subjects without psoriasis. Our results suggest that even in the scalp, psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprint were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with that of skin psoriasis, which was mainly associated with activation of TNFα/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes

    A Framework for Multi-Omic Prediction of Treatment Response to Biologic Therapy for Psoriasis.

    Get PDF
    Biologic therapies have shown high efficacy in psoriasis, but individual response varies and is poorly understood. To inform biomarker discovery in the Psoriasis Stratification to Optimise Relevant Therapy (i.e., PSORT) study, we evaluated a comprehensive array of omics platforms across three time points and multiple tissues in a pilot investigation of 10 patients with severe psoriasis, treated with the tumor necrosis factor (TNF) inhibitor, etanercept. We used RNA sequencing to analyze mRNA and small RNA transcriptome in blood, lesional and nonlesional skin, and the SOMAscan platform to investigate the serum proteome. Using an integrative systems biology approach, we identified signals of treatment response in genes and pathways associated with TNF signaling, psoriasis pathology, and the major histocompatibility complex region. We found association between clinical response and TNF-regulated genes in blood and skin. Using a combination of differential expression testing, upstream regulator analysis, clustering techniques, and predictive modeling, we show that baseline samples are indicative of patient response to biologic therapies, including signals in blood, which have traditionally been considered unreliable for inference in dermatology. In conclusion, our pilot study provides both an analytical framework and empirical basis to estimate power for larger studies, specifically the ongoing PSORT study, which we show as powered for biomarker discovery and patient stratification
    corecore