1,344 research outputs found

    Radio Polarization of BL Lacertae objects

    Full text link
    In this paper, using the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8 GHZ, and 14.5 GHz) radio frequencies, we studied the polarization properties for 47 BL Lacertae objects(38 radio selected BL Lacertae objects, 7 X-ray selected BL Lacertae, and two inter-middle objects (Mkn 421 and Mkn 501), and found that (1) The polarizations at higher radio frequency is higher than those at lower frequency, (2) The variability of polarization at higher radio frequency is higher than those at lower frequency, (3) The polarization is correlated with the radio spectral index, and (4) The polarization is correlated with core-dominance parameter for those objects with known core-dominance parameters suggesting that the relativistic beaming could explain the polarization characteristic of BL Lacs.Comment: 5 pages, 3 figures, 1 table. PASJ, in pres

    Inferior vestibular neuritis in a fighter pilot: A case report

    Get PDF
    Pilot spatial disorientation is a leading factor contributing to many fatal flying accidents. Spatial orientation is the product of integrative inputs from the proprioceptive, vestibular, and visual systems. Vestibular neuritis (VN) can lead to sudden pilot incapacitation in flight. VN is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost. This paper describes a fighter pilot with symptoms suggestive of VN but with normal caloric test results. Further test showed unilateral loss of vestibular evoked myogenic potential. We believe that the pilot suffered from pure inferior nerve vestibular neuritis. VEMP plays a major role in the diagnosis of inferior nerve vestibular neuritis in pilots. Aeromedical concerns are also discussed

    DNMT3a in the hippocampal CA1 is crucial in the acquisition of morphine self‐administration in rats

    Get PDF
    Drug‐reinforced excessive operant responding is one fundamental feature of long-lasting addiction‐like behaviors and relapse in animals. However, the transcriptional regulatory mechanisms responsible for the persistent drug‐specific (not natural rewards) operant behavior are not entirely clear. In this study, we demonstrate a key role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of morphine self‐administration (SA) in rats. The expression of DNMT3a in the hippocampal CA1 region but not in the nucleus accumbens shell was significantly up‐regulated after 1‐ and 7‐day morphine SA (0.3 mg/kg/infusion) but not after the yoked morphine injection. On the other hand, saccharin SA did not affect the expression of DNMT3a or DNMT3b. DNMT inhibitor 5‐aza‐2‐deoxycytidine (5‐aza) microinjected into the hippocampal CA1 significantly attenuated the acquisition of morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the morphine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays an important role in the acquisition of morphine SA and may be a valid target to prevent the development of morphine addiction. Includes Supplemental informatio

    A 10 km daily-level ultraviolet radiation predicting dataset based on machine learning models in China from 2005 to 2020

    Get PDF
    Ultraviolet (UV) radiation is closely related to health, but limited measurements hindered further investigation of its health effects in China. Machine learning algorithm has been widely used in predicting environmental factors with high accuracy, but limited studies have done for UV radiation. This study aimed to develop UV radiation prediction model based on random forest method, and predict UV radiation at daily level and 10 km resolution in mainland China in 2005–2020. A random forest model was employed to predict UV radiation by integrating ground UV radiation measurements from monitoring stations and multiple predictors, such as UV radiation data from satellite. Missing data of satellite-based UV radiation was filled by three-day moving average method. The model's performance was evaluated through multiple cross-validation (CV) methods. The overall R2 (root mean square error, RMSE) between measured and predicted UV radiation from model development and model 10-fold CV was 0.97 (15.64 W m-2) and 0.83 (37.44 W m-2) at daily level, respectively. The model with OMI EDD performed higher predicting accuracy than the one without it. Based on predictions of UV radiation at daily level and 10 km spatial resolution and nearly 100 % spatiotemporal coverage, we found UV radiation increased by 4.20 % while PM2.5 levels decreased by 48.51 % and O3 levels rose by 22.70 % in 2013–2020, suggesting a potential correlation among these environmental factors. Uneven spatial distribution of UV radiation was found to be associated with factors such as latitude, elevation, meteorological factors and seasons. The eastern areas of China posed higher risk with both high population density and UV radiation intensity. Based on machine learning algorithm, this study generated a gridded dataset characterized by relatively high precision and extensive spatiotemporal coverage of UV radiation, which demonstrates the spatiotemporal variability of UV radiation levels in China and can facilitate health-related research in the future. This dataset is currently freely available at https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024)

    High activity and high functional connectivity are mutually exclusive in resting state zebrafish and human brains

    Get PDF
    The structural connectivity of neurons in the brain allows active neurons to impact the physiology of target neuron types with which they are functionally connected. While the structural connectome is at the basis of functional connectome, it is the functional connectivity measured through correlations between time series of individual neurophysiological events that underlies behavioral and mental states. However, in light of the diverse neuronal cell types populating the brain and their unique connectivity properties, both neuronal activity and functional connectivity are heterogeneous across the brain, and the nature of their relationship is not clear. Here, we employ brain-wide calcium imaging at cellular resolution in larval zebrafish to understand the principles of resting state functional connectivity. We recorded the spontaneous activity of >12,000 neurons in the awake resting state forebrain. By classifying their activity (i.e., variances of ΔF/F across time) and functional connectivity into three levels (high, medium, low), we find that highly active neurons have low functional connections and highly connected neurons are of low activity. This finding holds true when neuronal activity and functional connectivity data are classified into five instead of three levels, and in whole brain spontaneous activity datasets. Moreover, such activity-connectivity relationship is not observed in randomly shuffled, noise-added, or simulated datasets, suggesting that it reflects an intrinsic brain network property. Intriguingly, deploying the same analytical tools on functional magnetic resonance imaging (fMRI) data from the resting state human brain, we uncover a similar relationship between activity (signal variance over time) and functional connectivity, that is, regions of high activity are non-overlapping with those of high connectivity. We found a mutually exclusive relationship between high activity (signal variance over time) and high functional connectivity of neurons in zebrafish and human brains. These findings reveal a previously unknown and evolutionarily conserved brain organizational principle, which has implications for understanding disease states and designing artificial neuronal networks

    Critical review on unraveling uncultivable pesticide degraders via stable isotope probing (SIP)

    Get PDF
    Uncultivable microorganisms account for over 99% of all species on earth, playing essential roles in ecological processes such as carbon/nitrogen cycle and chemical mineralization. Their functions remain unclear in ecosystems and natural habitats, requiring cutting-edge biotechnologies for a deeper understanding. Stable isotope probing (SIP) incorporates isotope-labeled elements, e.g. 13 C, 18 O or 15 N, into the cellular components of active microorganisms, serving as a powerful tool to link phylogenetic identities to their ecological functions in situ. Pesticides raise increasing attention for their persistence in the environment, leading to severe damage and risks to the ecosystem and human health. Cultivation and metagenomics help to identify either cultivable pesticide degraders or potential pesticide metabolisms within microbial communities, from various environmental media including the soil, groundwater, activated sludge, plant rhizosphere, etc. However, the application of SIP in characterizing pesticide degraders is limited, leaving considerable space in understanding the natural pesticide mineralization process. In this review, we try to comprehensively summarize the fundamental principles, successful cases and technical protocols of SIP in unraveling functional-yet-uncultivable pesticide degraders, by raising its shining lights and shadows. Particularly, this study provides deeper insights into various feasible isotope-labeled substrates in SIP studies, including pesticides, pesticide metabolites, and similar compounds. Coupled with other techniques, such as next-generation sequencing, nanoscale secondary ion mass spectrometry (NanoSIMS), single cell genomics, magnetic-nanoparticle-mediated isolation (MMI) and compound-specific isotope analysis (CSIA), SIP will significantly broaden our understanding of pesticide biodegradation process in situ

    On-chip topological transport of optical frequency combs in silicon-based valley photonic crystals

    Full text link
    The generation and control of optical frequency combs in integrated photonic systems enables complex, high-controllable, and large-scale devices. In parallel, harnessing topological physics in multipartite systems has allowed them with compelling features such as robustness against fabrication imperfections. Here we experimentally demonstrate on-chip topological transport for optical frequency combs at telecommunication wavelengths, both in classical and nonclassical domains. We access both the quantum frequency combs and dissipative Kerr soliton combs with a micro-resonator. The quantum frequency comb, that is, a coherent superposition of multiple frequency modes, is proven to be a frequency-entangled qudit state. We also show that dissipative Kerr soliton combs are highly coherent and mode-locked due to the collective coherence or self-organization of solitons. Moreover, the valley kink states allow both quantum frequency combs and dissipative Kerr soliton combs with robustness against sharp bends. Our topologically protected optical frequency combs could enable the inherent robustness in integrated complex photonic systems.Comment: 20 pages,12 figure

    Electromagnetic induced transparency and slow light in interacting quantum degenerate atomic gases

    Full text link
    We systematically develop the full quantum theory for the electromagnetic induced transparency (EIT) and slow light properties in ultracold Bose and Fermi gases. It shows a very different property from the classical theory which assumes frozen atomic motion. For example, the speed of light inside the atomic gases can be changed dramatically near the Bose-Einstein condensation temperature, while the presence of the Fermi sea can destroy the EIT effect even at zero temperature. From experimental point of view, such quantum EIT property is mostly manifested in the counter-propagating excitation schemes in either the low-lying Rydberg transition with a narrow line width or in the D2 transitions with a very weak coupling field. We further investigate the interaction effects on the EIT for a weakly interacting Bose-Einstein condensate, showing an inhomogeneous broadening of the EIT profile and nontrivial change of the light speed due to the quantum many-body effects beyond mean field energy shifts.Comment: 7 figure

    Uplift, Climate and Biotic Changes at the Eocene-Oligocene Transition in Southeast Tibet

    Get PDF
    The uplift history of southeastern Tibet is crucial to understanding processes driving the tectonic evolution of the Tibetan Plateau and surrounding areas. Underpinning existing palaeoaltimetric studies has been regional mapping based in large part on biostratigraphy that assumes a Neogene modernisation of the highly diverse, but threatened, Asian biota. Here, with new radiometric dating and newly-collected plant fossil archives, we quantify the surface height of part of Tibet’s southeastern margin of Tibet in the latest Eocene (~34 Ma) to be ~3 km and rising, possibly attaining its present elevation (3.9 km) in the early Oligocene. We also find that the Eocene-Oligocene transition in southeastern Tibet witnessed leaf size diminution and a floral composition change from sub-tropical/warm temperate to cool temperate, likely reflective of both uplift and secular climate change, and that by the latest Eocene floral modernization on Tibet had already taken place implying modernization was deeply-rooted in the Paleogene
    • 

    corecore