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Abstract 
Drug‐reinforced excessive operant responding is one fundamental feature of long‐
lasting addiction‐like behaviors and relapse in animals. However, the transcriptional 
regulatory mechanisms responsible for the persistent drug‐specific (not natural re‐
wards) operant behavior are not entirely clear. In this study, we demonstrate a key 
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role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of 
morphine self‐administration (SA) in rats. The expression of DNMT3a in the hip‐
pocampal CA1 region but not in the nucleus accumbens shell was significantly up‐
regulated after 1‐ and 7‐day morphine SA (0.3 mg/kg/infusion) but not after the 
yoked morphine injection. On the other hand, saccharin SA did not affect the ex‐
pression of DNMT3a or DNMT3b. DNMT inhibitor 5‐aza‐2‐deoxycytidine (5‐aza) 
microinjected into the hippocampal CA1 significantly attenuated the acquisition of 
morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the mor‐
phine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays 
an important role in the acquisition of morphine SA and may be a valid target to 
prevent the development of morphine addiction. 

Keywords: acquisition, DNMT3a, hippocampal CA1, morphine, self‐administration 

1  Introduction 

Recent increase in opioid prescriptions is responsible for the upsurge 
in reported cases of drug overdose and opioid‐related addiction.1 

This epidemic has prompted researchers to look into the neurobio‐
logical mechanisms of opioid addiction. Behaviorally, it is well doc‐
umented that environmental cues associated with drug use can en‐
ter into an association with the rewarding effects of drugs, becoming 
conditioned rewards to motivate drug seeking and taking behaviors. 
They can also trigger drug relapse in drug addicts.2 The strength of 
the cue‐drug association appears to be higher than that of the cue‐
natural reward (e.g., food) association in controlling behaviors,3,4 ow‐
ing to the fact that drugs of abuse often cause superphysiological 
changes in the brain reward systems (e.g., the mesolimbic dopamine 
system) and induce longer‐lasting molecular adaptations than those 
induced by natural rewards.5 For instance, drugs of abuse produce a 
much greater dopamine increase that does not habituate over time 
compared with natural rewards.6 This unique effect of drugs might fa‐
cilitate dopamine activity and enhance synaptic plasticity in the hip‐
pocampus CA17,8 and makes the cue‐drug association much easily to 
be formed and harder to be extinguished. 

Recent studies have highlighted the importance of DNA methyla‐
tion, a stable chromatin modification catalyzed by DNA methyltrans‐
ferases (DNMTs),9 in drug induced synaptic plasticity and drug ad‐
diction.10,11 Three DNMTs have been identified in mammalian cells: 
DNMT1 primarily methylate hemimethylated DNA, while DNMT3a 
and DNMT3b are de novo methyltransferases.12 The expressions of 
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DNMT1, DNMT3a, and DNMT3b in the nucleus accumbens (NAc) are 
found to be altered after cocaine treatment.11,13 Furthermore, block‐
ing DNA methylation in the NAc is shown to potentiate cocaine re‐
ward.11 Recently, DNA methylation has been reported to contribute to 
the incubation of cocaine craving14 and heritable cocaine‐seeking mo‐
tivation.15 Our previous studies also suggest that injection of DNMT 
inhibitor into the hippocampal CA1 region impairs the acquisition of 
cocaine‐induced and morphine‐induced conditioned place preference 
(CPP).16,17 Collectively, these findings suggest that DNMTs may be crit‐
ical for the acquisition of cue‐drug association. 

Operant conditioning linking environmental cues with a drug re‐
ward cause long‐lasting pathological alterations in both reward and 
learning circuits.18 The NAc and hippocampus CA1 have been identi‐
fied as key brain areas involved in this type of learning. The NAc shell 
is targeted by drug rewards19‐21 and food rewards,22,23 while the hip‐
pocampus plays an important role in the acquisition of drug condi‐
tioned behaviors, such as cocaine‐induced and morphine‐induced 
CPP and self‐administration (SA). Studies show that injection of dopa‐
mine receptor antagonists into the CA1 region impairs the acquisition 
of morphine‐induced CPP,24 and cocaine SA training causes change in 
neuronal morphology in the hippocampal CA1,25 and inhibition of cy‐
clin‐dependent kinase 5 in the dorsal hippocampus is able to enhance 
heroin SA.26 Furthermore, heroin SA is shown to increase the function 
of mu‐opioid receptors in both the NAc and the hippocampus. 27 Al‐
though there is evidence that the formation of cue‐drug association 
requires the transcriptional regulation in these brain regions,28 our un‐
derstanding of the role of DNA methylation in the acquisition of drug 
SA is still inadequate. 

In the present study, we used the morphine SA model in rats and 
examined the role of de novo DNMTs in the acquisition of this oper‐
ant response. Our results show that the acquisition of morphine SA 
resulted in the overexpression of DNMT3a in the CA1 region of the 
hippocampus but not in the NAc shell. The DNMT3a expression was 
up‐regulated only in the rats that acquired morphine SA but not in 
the yoked and morphine‐matched control rats or in those saccharin 
SA rats. We also found that DNMT inhibition or DNMT3a knockdown 
in the CA1 impaired the acquisition of morphine SA. Overall, these 
findings indicate that DNMT3a play an important role in the acquisi‐
tion of opiate operant conditioning. 
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2  Materials and Methods 

2.1  Animals 

Eight‐ or nine‐week‐old male Sprague‐Dawley rats (Charles River, 
Beijing, China) were used. They were individually housed in stainless 
metal mesh cage (25 cm × 22.5 cm × 30 cm) on 12‐hour light/dark 
cycle with food and water ad libidum before morphine SA. A total of 
181 rats were used, 3 rats died after surgery, 4 rats were excluded af‐
ter histological evaluation of the infusion target, and 9 were excluded 
due to SA vein catheter blockage. Therefore, 165 rats were considered 
for final data analysis. The experimental procedures were carried out 
according to the guideline provided by the Regulation for the Admin‐
istration of Affairs Concerning Experimental Animals (China, 1988). The 
experimental protocol was approved by Research Ethics Review Board 
of Institute of Psychology, Chinese Academy of Sciences. 

2.2  Jugular vein catheterization 

Rats were anesthetized with pentobarbital sodium (100 mg/kg). The 
silicone catheter (OD 1.0 mm, ID 0.55 mm) was implanted in a rat’s 
right jugular vein and secured to the vein with silk sutures. The other 
side of the catheter was passed subcutaneously to the back where it 
exited into a connector (22‐gauge cannula; Plastics One) sutured on 
skin. Rats were allowed to recover for 5 to 7 days before behavioral 
training. Catheters were flushed once daily with 0.4 mL of heparinized 
saline (100 U/mL) during the recovery days. 

2.3  Brain stereotaxic surgery 

Immediately after the jugular vein catheterization, a stereotaxic sur‐
gery was conducted for the rats that were used in the microinjection 
experiments. Stainless steel guide cannulas (8 mm for the hippocam‐
pal CA1; 11.5 mm for the NAc shell) were bilaterally implanted into 
the hippocampal CA1 (anteroposterior, −3.6 mm; mediolateral, ±1.7 
mm to bregma; and dorsoventral, −2.6 mm) or NAc shell (anteropos‐
terior, +1.6 mm; mediolateral, ±0.8 mm to bregma; and dorsoven‐
tral, −7.0 mm) on a stereotactic device (RWD Life Science, Shenzhen, 
China). Figure 3 shows the sample image of placement of the guide 
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cannula in the CA1 and the NAc shell. After surgery, rats were treated 
with a systemic antibiotic (16 000 U/rat, penicillin) daily during the re‐
covery days (5‐7 days). 

2.4  Microinjection of 5‐Aza‐2′‐deoxycytidine 

The DNMT inhibitor 5‐Aza‐2′‐deoxycytidine (5‐aza, Sigma, St. Louis, 
MO, USA) was diluted in 0.8% acetate (0.9% sterile saline) to a con‐
centration of 2 mg/mL. Rats received bilateral microinjection of 5‐aza 
(0.5 μL/side) to the CA1 or the NAc shell immediately before each 
morphine SA daily test session. The vehicle group received isovolu‐
metric 0.8% acetic acid injection. Hamilton microsyringe (10 μL) and a 
syringe pump (RWD Life Science, Shenzhen, China) were used to de‐
liver 5‐aza or vehicle. The injection rate was 0.25 μL/min over 2 min‐
utes, after which the injection needle remained in the guide cannula 
for another 2 minutes to prevent backflow. After injection, stainless 
plugs were put back into the guide cannula. 

2.5  Histology identification 

After the completion of all behavioral tests, rats were deeply anes‐
thetized with chloral hydrate (40 mg/kg). Their brains were removed, 
postfixed with 4.0% paraformaldehyde in 0.01 M phosphate buffer 
salt (pH 7.4) for 24 hours, and dehydrated by 20% sucrose solution 
and 30% sucrose solution at 4°C successively. Coronal sections (40‐
μm thick) containing the cannula tracks were cut on a freezing mi‐
crotome. Rats with cannula misplacement of the interest area were 
excluded from data analysis. The schematic representations of the in‐
tracranial cannula infusion sites are shown in Figure 3. 

2.6  Adeno‐associated virus (AAV) preparation 

We used AAV2‐Dnmt3a (2.19 × 1012GC/mL) to knock down DN‐
MT3a. The short‐hairpin RNA (shRNA) recognizes DNMT3a sequence 
(GGAAGCGGAGTGTGGAATTTA), while the scrambled sequence for the 
control AAV2 (3.69 × 1012GC/mL) is CCTAAGGTT AAGTCGCCCTCG. For 
the expression of shRNA, we used a vector containing the human U6 
promoter upstream of the shRNA sequence and the human phospho‐
glycerate kinase promoter to drive EGFP. The viruses were designed 
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and assembled by Cygen (Guangzhou, China). The in vivo validation 
of AAV2‐Dnmt3a is shown in Figure 5E. 

2.7  AAV microinjection 

AAV2‐Dnmt3a and AAV2‐Control were bilaterally microinjected into 
the hippocampal CA1 (1.0 μL/side) based on the published studies. 
29‐31 We used the same coordinates mentioned above. Injections were 
made by using a 10‐μL Hamilton syringe controlled by a syringe pump 
(RWD, Shenzhen, China). We delivered the AAVs at a rate of 0.1 μL/
minutes over 10 minutes. After injection, the injection needle was left 
in place for an additional 10 minutes to allow diffusion. Behavioral or 
western blot experiments were performed 4 weeks after the stereo‐
taxic delivery of AAVs. 

2.8  Apparatus 

The SA was conducted in eight operant chambers (AniLab, Ningbo, 
China). Each chamber (29 × 29 × 26 cm) was housed in an opaque 
sound‐proof box equipped with an exhaust fan. Each chamber had a 
white house light for illumination. Two holes, placed at 5 cm above 
the grid floor, were used to record “nose poking.” A yellow cue light 
was placed inside each hole. A buzzer, located outside of the cham‐
ber, was used to provide the audio cue. The vein catheter of a rat was 
connected to a pump‐driven syringe (infusion speed, 20 μL/s). Data 
were collected with PC Windows‐compatible AniLab software (AniLab, 
Ningbo, China). 

2.9  Morphine SA training and testing 

Rats were trained to self‐administer morphine for 3 hours/day under a 
fixed‐ratio‐1 schedule with 20‐second timeout. The training occurred 
in the dark cycle for 1 day or 7 days. We set one nose‐poke hole as 
active and the other as inactive. The house light was turned on at the 
beginning of each session to indicate the availability of morphine. Rats 
received an intravenous morphine infusion (0.3 mg/kg, 0.1 mL, 5 s/in‐
fusion) when they poked the active hole. This response also simulta‐
neously activated a compound 5‐second tone‐light cue and turned 
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the houselight off for 20 seconds. No programmed event happened 
during the 20‐second timeout period even though rats may still poke 
the active hole. Poking the inactive hole did not trigger morphine in‐
fusion or the presentation of conditioned cues. We set 60 infusions 
as the maximum for 3‐hour session to prevent overdose. Yoked rats 
received passive noncontingent morphine injections in an identical 
temporal pattern as their morphine self‐administering partners but 
did not receive the infusion cues with each nose‐poke. Rats were fed 
daily with 20‐g chow during morphine SA.32 Catheters were flushed 
twice daily with 0.2 mL of heparinized saline (100 U/mL). The number 
of active and inactive nose‐pokes (NP) was recorded. 

2.10  Saccharin SA 

Rats were trained to self‐administer 0.2% saccharin solution for 1 hour 
per day under a fixed‐ratio‐1 with 20‐second timeout schedule for 1 
day or 7 days. Other training conditions for saccharin SA were similar 
to those for morphine SA except that a liquid receptacle was placed 
between the nose‐poke holes and there was no limit on the maxi‐
mum number of saccharin intakes. Yoked control rats also received 
passive noncontingent saccharin liquids in an identical temporal pat‐
tern as their saccharin self‐administering partners but did not receive 
the conditional cues with each nose‐poke. 

2.11  Brain tissue dissection 

Rats were decapitated immediately after morphine or saccharin SA, 
and the brains were removed and submerged in optimal cutting tem‐
perature compound (SAKURA Tissue‐Tek 4583, USA) in tinfoil vessels. 
Then, the brains were quick‐frozen by liquid nitrogen. We dissected 
out the CA1 and the NAc shell in freezing microtome (Leica, Germany) 
by using a punch tool (1‐mm inner diameter). 

2.12  Western blotting 

Crude protein lysates were generated by ultrasonication of brain 
tissue in RIPA buffer containing a 2× concentration of Halt Prote‐
ase and 1 × Phosphatase Inhibitor (Applygen, China) cocktail and 
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centrifuged for 10 minutes at 12 000 g at 4°C. Protein concentra‐
tions in the supernatant (extract) were measured by the Pierce BCA 
Protein Assay Kit (ThermoFisher, USA). Equal amount of total protein 
(30 μg) was loaded in sodium dodecyl sulfate polyacrylamide gel 
electrophoresis gel. After electrophoresis, proteins were transferred 
onto polyvinylidene fluoride (PVDF) membrane (Merck, Germany). 
The PVDF membrane was cut into horizontal stripes according to dif‐
ferent molecular weights of target proteins, as indicated by marker 
(Thermo Scientific, USA). We then made PVDF membrane stripe con‐
taining only one target protein probed with the homologous pri‐
mary antibodies in 0.1% TBST at 4°C overnight. Primary antibodies 
included rabbit anti‐DNMT3a antibody (1:2000, Abcam, ab188470), 
rabbit anti‐ DNMT3b antibody (1:1000, Abcam, ab79822), and mouse 
anti‐β‐actin (1:3000, Sigma, A2228). Then the PVDF membrane was 
incubated with secondary antibodies (goat antirabbit: 1:2000, ZSGB‐
BIO, ZB2301; goat antimouse: 1:2000, ZSGB‐BIO, ZB‐2305) in 0.1% 
TBST for 1 hour at room temperature. The blots were then incu‐
bated with a layer of enhanced chemiluminescence substrate (Detec‐
tion Reagents 1 and 2, 1:1 ratio, Applygen, China) for 90 seconds at 
room temperature. The membranes were imaged using FluorChem 
E system (Protein simple, America). Densitometry was used to cal‐
culate the band intensity. The optical densities were normalized to 
β‐actin protein expression to control for inconsistencies between 
the loaded samples. The data showed in figures were normalized to 
the naïve rats. 

2.13  Statistical analysis 

Data are expressed as mean ± SEM, and all statistical analyses were 
performed using GraphPad Prism version 6.00 for Windows. Two‐way 
analysis of variance (ANOVA) was used to analyze the behavioral and 
western blot data, followed by Bonferroni post hoc analysis if nec‐
essary. Student’s t test was used to examine the knocking‐down ef‐
ficiency of AAV‐DNMT3a. For clarity, we indicate the between‐ and 
within‐subject factors of the different analyses in Section 3. Statistical 
significance was set at P < 0.05. 
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3  Results 

3.1  Morphine SA up‐regulated the expression of DNMT3a  
in the CA1 

Among the three groups of rats used in this experiment (Figure 1A), 
only those trained in morphine SA acquired this operant response af‐
ter 7‐day training (Figure 1B). ANOVA with nose‐poke (active vs. in‐
active) as the between‐subjects factor and training day (seven levels) 
as the within‐subjects factor showed a main effect of nose‐poke (F1, 

130 = 131.50, P < 0.001; n = 9‐18) and nosepoke × training day inter‐
action (F6, 130 = 3.55, P < 0.01), but no main effect of training day (F6, 

130 = 0.77, P = 0.59). Post hoc comparisons revealed that rats poked 
the active hole significantly more than the inactive one beginning on 
the second day (P < 0.01). 

On the DNMT expression in the CA1, ANOVA with treatment (na‐
ïve, SA morphine, Yoked morphine) as the between‐subjects factor 
and training day (two levels) as the within‐subjects factor showed a 
main effect of treatment (F2, 43 = 10.11, P < 0.001), but no main effect 
of training day (F1, 43 = 0.77, P = 0.38), or treatment × training day in‐
teraction (F2, 43 = 1.14, P = 0.33). Post hoc test showed that DNMT3a 
expression in the CA1 increased after morphine SA training compares 
with the naïve group. This effect appeared after 1 day or 7 days of 
training (1 day: P < 0.05, n = 8‐9 per group; 7 days: P < 0.01, n = 9 
per group; Figure 1C). The DNMT3a expression was also increased in 
the morphine SA group compared with the yoked group after 7 days 
but not after 1 day of training (1 day: P = 0.81, n = 7‐8 per group; 7 
days: P < 0.01, n = 7‐9 per group; Figure 1C). DNMT3a expression in 
the yoked morphine group did not significantly differ from the naïve 
group (1 day: P = 0.31, n = 7‐9 per group; 7 days: P > 0.99, n = 7‐9 
per group). 

For the DNMT3a expression in the NAc shell, statistical analysis did 
not find any effect of treatment (F2, 44 = 0.83, P = 0.44), training day 
(F1, 44 = 2.54, P = 0.12), or treatment × training day interaction (F2, 44 = 
0.66, P = 0.52; n = 7‐9 per group; Figure 1D). 

For the DNMT3b expression in the CA1 and in the NAc shell, statis‐
tical analysis did not find a main effect of treatment (CA1:F2, 44 = 0.82, 
P = 0.92, n = 7‐9 per group; Figure 1E; NAc shell:F2, 44 = 0.31, P = 0.73, 
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n = 7‐9 per group; Figure 1F), training day (CA1: F 1, 44 = 0.04, P = 0.84, 
n = 7‐9 per group; Figure 1E; NAc shell:F1, 44 = 0.71, P = 0.41, n = 7‐9 
per group; Figure 1F), or treatment × training day interaction (CA1:F2, 

44 = 0.04, P = 0.96, n = 7‐9 per group; Figure 1E; NAc shell:F2, 44 = 0.24, 
P = 0.79, n = 7‐9 per group; Figure 1F). 

In summary, we showed that rats acquired morphine SA, and this 
operant behavior was associated with an up‐regulated DNMT3a in 
the CA1, indicating that DNMT3a in the CA1 is specifically involved in 
the acquisition of morphine SA. 

Saccharin SA had no significant effect on the expression of DNMTs 
in the CA1 or the NAc shell. 

To clarify whether the up‐regulation of DNMT3a in the CA1 was 
specific to morphine SA, we used saccharin SA to simulate operant 
learning with natural reward and examined the expression of DNMT3. 
Among the three groups tested (Figure 2A), only the conditioned 
group acquired saccharin SA after 7 days of training (Figure 2B). There 
was a main effect of nose‐poke (active vs inactive) (F1, 820 = 319, P < 
0.001; n = 6‐12), nose‐poke × training day interaction (F6, 820 = 13.56, 
P < 0.001), and a main effect of training day (F6, 820 = 13.56, P < 0.001). 
Post hoc comparisons revealed that rats poked the active hole signif‐
icantly more than the inactive hole beginning on the second day of 
training (P < 0.001). 

For the DNMT3a expression in the CA1, statistical analysis did not 
find a main effect of treatment (naïve, SA saccharin, Yoked saccharin) 
(F2, 29 = 1.20, P = 0.32), training day (F1, 29 = 1.36, P = 0.25), or treatment 
× training day interaction (F2, 29 = 2.37, P = 0.11, n = 5‐6 per group; 
Figure 2C). For the DNMT3a expression in the NAc shell, statistical 
analysis showed a main effect of training day (F1, 29 = 5.25, P < 0.05), 
but no main effect of treatment (F2, 29 = 2.97, P = 0.07) or treatment × 

Figure 1. The expression of DNMT3 after 1‐ or 7‐day morphine self‐administration 
(SA) training and yoked control. A, The group information. B, Rats acquired mor‐
phine SA after 7 days of training (n = 9–18). DNMT3a expression of morphine SA 
and yoke control group in the CA1 (C) and the NAc shell (D) (n = 7–9). DNMT3b ex‐
pression of morphine SA and yoke control group in the CA1 (E) and the NAc shell 
(F) (n = 7–9). Data are presented as mean ± SEM, **P < 0.01, ***P < 0.001 vs. inac‐
tive nose‐pokes; #P < 0.05 vs. naive group, ##P < 0.01 vs. naive group or yoked mor‐
phine group  
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training day interaction (F2, 29 = 2.86, P = 0.07). Post hoc test showed 
that saccharin SA did not affect DNMT3a expression compared with 
the naïve group (1 day: P > 0.99, n = 6 per group; 7 days: P > 0.99, 
n = 5‐6 per group; Figure 2D). Interestingly, DNMT3a in the yoked 
saccharin group showed increased expression compare to the naïve 
group after 1 day of training (P < 0.01) but not after 7 days (P > 0.99). 

For the DNMT3b expression in the CA1 and in the NAc shell, sta‐
tistical analysis did not show a main effect of treatment (CA1: F2, 30 = 
0.39, P = 0.68, n = 6 per group; Figure 2E; NAc shell: F2, 29 = 0.31, P = 
0.84, n = 6 per group; Figure 2F), training day (CA1:F1, 30 = 0.04, P = 
0.84, n = 6 per group; Figure 2E; NAc shell: F1, 29 = 0.17, P = 0.6872, 
n = 6 per group; Figure 2F), or treatment × training day interaction 
(CA1:F2, 30 = 0.17, P = 0.84, n = 6 per group; Figure 2E; NAc shell:F2, 29 
= 0.17, P = 0.84, n = 6 per group; Figure 2F). 

Neither DNMT3a expression nor DNMT3b expression in the CA1 
significantly changed after 1 day or 7 days of 3‐hour saccharin SA 
training (see Figure S1 in the Supporting Information). 

These data suggest that saccharin SA had no significant effect on 
the expression of DNMT3 in either the CA1 or NAc shell. The upreg‐
ulation of DNMT3a in the CA1 may be specific to the morphine SA. 

Microinjection of 5‐aza into the CA1 inhibited the acquisition of 
morphine SA. 

In order to demonstrate the causal role of DNMTs in the acquisi‐
tion of morphine SA, we microinjected the DNMT antagonist 5‐aza or 
vehicle into the CA1 or the NAc shell before each daily training ses‐
sion and examined whether 5‐aza would alter the acquisition of mor‐
phine SA. Figure 3 shows the sample images of guide cannula place‐
ment in the CA1 and the NAc shell. For the vehicle‐CA1 group (Figure 
4A), two‐way ANOVA revealed a main effect of nose‐poke (active vs. 

Figure 2. The expression of DNMT3 after 1‐ or 7‐day saccharin self‐administration 
(SA) training and yoked control. A, The group information. B, Rats acquired saccha‐
rin SA after 7 days of training (n = 6–12). DNMT3a expression of saccharin SA and 
yoke control group in the CA1 (C) and the NAc shell (D) (n = 5–6). DNMT3b expres‐
sion of saccharin SA and yoke control group in the CA1 (E) and the NAc shell (F) (n 
= 6). Data are presented as mean ± SEM, ***P < 0.001 vs. inactive nose‐pokes; ##P 
< 0.01 vs. naive group  
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inactive,F1, 220 = 44.45, P < 0.001) and nose‐poke × training day in‐
teraction (F6, 132 = 2.33, P < 0.05, n = 12). Post hoc comparisons re‐
vealed that there were more active NP than inactive NP beginning on 
the third day (P < 0.001). For the vehicle‐NAc shell group, two‐way 
ANOVA also revealed a main effect of nose‐poke (F1, 140 = 45.67, P < 
0.001) and nose‐poke × training day interaction (F6, 840 = 2.43, P < 0.05, 
n = 7; Figure 4B). Again, there were significantly more active NP than 
the inactive NP since the second day (P < 0.01). These results sug‐
gest that both vehicle groups acquired the morphine SA successfully. 

For the 5‐aza‐CA1 group (Figure 4C), two‐way ANOVA did not find 
any significant effect of nose‐poke (F1, 20 = 2.60, P = 0.12), nor nose‐
poke × training day interaction (F6, 120 = 0.29, P = 0.94, n = 11). For the 
5‐aza‐NAc shell group (Figure 4D), two‐way ANOVA only revealed a 
main effect of nose‐poke (F1, 120 = 21.64, P < 0.001), but no significant 
effect of training day (F6, 720 = 0.76, P = 0.60) nor their interaction (F6, 

720 = 0.83, P = 0.55, n = 8). Post hoc comparisons revealed that there 
were significantly more active NP than the inactive NP in this group 
on the second and fourth to seventh days (P < 0.05, n = 8). These re‐
sults suggest that microinjection 5‐aza into the CA1 not into the NAc 
shell inhibited the acquisition of morphine SA. 

Figure 3. Schematic representations of the intracranial cannula infusion sites in the 
hippocampal CA1 (A) and the NAc shell (B). Numbers besides the sections indicate 
anteroposterior distance from bregma in millimeters.   
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In order to compare the 5‐aza and vehicle groups directly, we cal‐
culated the percentage of NP in the active hole (%NPa) of both groups 
(%NPa = the number of active NP/[the number of active NP + the 
number of inactive NP]). The %NPa of the vehicle group was 60% at 

Figure 4. Effect of microinjection of a DNA methyltransferase inhibitor 5‐aza (1 μg/
side) on the acquisition of morphine self‐administration (SA). Microinjection of ve‐
hicle into the CA1 (A) or NAc shell (B) had no significant effect on the acquisition 
of morphine SA. Microinjection of 5‐aza into the CA1 (C) inhibited the acquisition 
of morphine SA while microinjection 5‐aza into the NAc shell (D) had no significant 
effect on the acquisition of morphine SA. E,F, Percentage of nose‐pokes in the ac‐
tive hole (%NPa) performed during the 7‐day morphine SA. Microinjection of 5‐aza 
into CA1 (E) inhibited the %NPa, while microinjection of 5‐aza into NAc shell (F) did 
not. Data are presented as mean ± SEM, n = 7–12. *P < 0.05, **P < 0.01, ***P < 0.001 
vs. inactive nose‐pokes. ##P < 0.01 vs. vehicle group   
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the beginning and gradually increased to 80% at the end of morphine 
SA (Figure 4E and 4F). After 5‐aza was microinjected into the CA1, the 
%NPa was maintained at 60% throughout the 7‐day morphine SA. 
ANOVA with treatment (5‐aza, vehicle) as the between‐subjects fac‐
tor and training day (7 levels) as the within‐subjects factor showed 
that the %NPa of the vehicle group was higher than the %NPa of the 
5‐aza group (Figure 4E; a main effect of treatment: F1, 147 = 10.09, P < 
0.01; no treatment × training day interaction: F6, 147 = 0.23, P = 0.97; no 
main effect of training day: F6, 147 = 1.18, P = 0.32). Microinjection of 5‐
aza into the NAc shell did not change the %NPa significantly (Figure 
4F; treatment effect: F1, 910 = 0.05, P = 0.83; treatment × training day 
interaction: F6, 910 = 0.51, P = 0.80; training day effect: F6, 910 = 5.54, P 
< 0.001). These results suggest that antagonizing DNMTs in the CA1, 
but not in the NAc shell, inhibited the acquisition of morphine SA. 

To confirm that the effect of 5‐aza on the acquisition is mediated 
by DNMT inhibition, we microinjected another DNMT inhibitor RG108 
into the CA1 before each daily training session and found that com‐
pared with vehicle treatment, RG108 inhibited the acquisition of mor‐
phine SA (see Figures S2 and S3). 

Knocking‐down DNMT3a in the CA1 inhibited the acquisition of 
morphine SA. 

To further validate the causal impact of DNMT3a on the acquisi‐
tion of morphine SA, we microinjected AAVs into the CA1 to knock‐
down DNMT3a and examined whether this manipulation altered the 
acquisition of morphine SA (Figure. 5). We used AAV, which contained 
a scrambled shRNA as the control AAV. The schematic representa‐
tion is showed in Figure 5A. We validated the effectiveness of AAVD‐
NMT3a expression in the CA1 28 days after microinjection (Figure 5B 
and 5C) by immunoblotting in naïve rats and found that AAV‐DN‐
MT3a knocked‐down DNMT3a successfully compared with the con‐
trol group (t = 3.01, P < 0.05, n = 4‐7; Figure 5E). 

We microinjected AAV in the CA1 28 days before the morphine SA 
training (Figure 5D). For the AAV‐Control group (Figure 5F), two‐way 
repeated measures ANOVA showed a main effect of nose‐poke (ac‐
tive vs inactive) (F1, 280 = 41.97, P < 0.001; n = 15), training day (F6, 168 
= 2.35, P < 0.05), and their interaction (F6, 168 = 5.65, P < 0.001). Post 
hoc comparisons revealed that the number of active NP was signif‐
icantly higher than that of the inactive NP beginning on the second 
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Figure 5. Effect of knocking down DNMT3a expression in the CA1 on the acqui‐
sition of morphine SA. A, The schematic representation of adeno‐associated virus 
(AAV)‐DNMT3a. ITR, inverted terminal repeat; U6, human U6 promoter; shRNA, short 
hair‐pin RNA; PKG, human phosphoglycerate kinase promoter; EGFP, EGFP reporter 
gene; pA, SV40 late polyadenation signal. B, Representative pictures of brain slices 
from rat injected with AAV‐DNMT3a. C, The experimental timeline of detecting the 
efficiency of AAV‐DNMT3a. D, The experimental timeline of AAV microinjection and 
morphine SA. E, AAV‐DNMT3a can knock‐down DNMT3a expression. F, Microinjec‐
tion AAV‐Control into the CA1 had no significant effect on the acquisition of mor‐
phine SA. G, Microinjection of AAV‐DNMT3a into the CA1 inhibited the acquisition 
of morphine SA. H, Percentage of nose‐pokes in the active hole (%NPa) performed 
during the 7‐day morphine SA. Knocking down DNMT3a in CA1 inhibited the %NPa. 
Data are presented as mean ± SEM, n = 14–15. #P < 0.05, ###P < 0.001 vs. AAV‐Con‐
trol; *P < 0.05, **P < 0.01, ***P < 0.001 vs. inactive nosepokes   
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day (P < 0.01), suggesting that the AAV‐Control group acquired the 
morphine SA successfully. For the AAV‐DNMT3a group (Figure 5G), 
two‐way ANOVA revealed a main effect of nose‐poke (F1, 260 = 6.87, 
P < 0.05), but no significant nose‐poke × training day interaction (F6, 

156 = 1.06, P = 0.39, n = 14). Post hoc comparisons revealed that the 
number of active NP was significantly higher than that of the inactive 
NP but only on the first day (P < 0.05). 

ANOVA with treatment (AAV‐DNMT3a, AAV‐ Control) as the be‐
tween‐subjects factor and training day (seven levels) as the within‐
subjects factor showed that the %NPa of the AAV‐DNMT3a group 
was significantly lower than that of the AAV‐Control group, indi‐
cating that AAV‐DNMT3a inhibited the %NPa of morphine SA (Fig‐
ure 5H; treatment:F1, 189 = 89.31, P < 0.001; treatment × training day 
interaction:F6, 189 = 6.18, P < 0.001; and training day:F6, 189 = 3.35, P < 
0.001). Once again, knocking‐down of DNMT3a in the CA1 inhibited 
the acquisition of morphine SA. 

4  Discussion 

The present study utilized a variety of behavioral and neuroscience 
tools and demonstrated that morphine SA, but not noncontingent 
passive morphine infusion (Figure 1C to 1F), selectively up‐regulated 
the expression of DNMT3a in the CA1 (not in the NA shell), but had 
no effect on DNMT3b expression in both regions. Furthermore, the 
finding that saccharin SA had no effect on the expression of DNMTs 
in both the CA1 and NAc shell suggests that this up‐regulation of DN‐
MT3a in the CA1 was a morphine SA‐specific effect, not just the re‐
sult of any operant conditioning in response to a reward. We further 
showed that inhibition of DNMTs by 5‐aza or knocking down the DN‐
MT3a by AAV in the CA1 during the SA training period suppressed 
the acquisition of morphine SA, demonstrating a causal role of CA1 
DNMT3a in the mediation of the acquisition of morphine SA. Over‐
all, our data strongly suggest that the DNMT3a in the CA1 is one of 
the critical mechanisms underlying the acquisition of morphine SA. 

Identifying the neurobiological substrates that are differentially af‐
fected by drugs of abuse and natural rewards is critical for our un‐
derstanding of the neurobiology of drug addiction and its treatment. 
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Previous studies show that the subthalamic nucleus exerts opposite 
effects on cocaine and natural rewards,33 and the dorsomedial stria‐
tum is differentially impacted by cocaine SA and sucrose SA.34 More‐
over, the NAc neurons differentially encode goal‐directed behaviors 
about drugs of abuse and natural rewards.35,36 Our previous study also 
reports that inhibition of NMDA receptors potentiated the expression 
of food‐induced CPP, but impaired that of morphine‐induced CPP.37 

Here, we show that DNMT3a was up‐regulated in the CA1 after mor‐
phine SA but not saccharin SA, suggesting that DNMT3a may be dif‐
ferentially targeted by morphine and saccharin. 

One important question is whether this epigenetic modification is 
specifically induced by the drug itself, or operant responding, or both. 
To control for the drug specific effect, we examined the expression of 
DNMT3a/3b in morphine SA and saccharin SA. Our results showed 
that 1 or 7 days of morphine SA up‐regulated the expression of DN‐
MT3a in the CA1, but saccharin SA did not. The parsimonious expla‐
nation is that morphine SA promotes dopamine neuronal excitation 
and produces a much greater dopamine increase than saccharin SA,38 

which might facilitate dopamine activity and enhance long‐term po‐
tentiation in the CA1.7,8 Thus, DNA methylation may be involved in 
the development of drug‐cue association, which is unusually stron‐
ger than the natural reward‐cue association.3,4 Consistent with this 
possibility, memory about morphine SA appears to be more stable 
than the food memory, and stable memory may depend on long‐last‐
ing changes in synaptic plasticity through regulation of gene expres‐
sion.28 It has been reported that the DNA methylation of calcineurin 
can persist for at least 30 days and is required for remote fear mem‐
ory.39 Furthermore, there are reports indicating that the formation of 
stimulus–reward associative memories or fear memory causes DNA 
methylation in the ventral tegmental area and the CA1/anterior cin‐
gulate cortex, respectively.22,40 This current study extends these stud‐
ies and provides new evidence that DNA methylation is also involved 
in the acquisition of morphine SA. Our findings also suggest that the 
DNA methylation resulted from the drug‐related learning and mem‐
ory but not from the drug itself, as the yoked morphine rats did not 
show such an effect. The results that DNMT3a was up‐regulated in 
the CA1 but not the NAc shell also suggest that this up‐regulation of 
DNMT3a is regional specific. 
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Similar epigenetic impairments have been reported in the stria‐
tum of drug addicts and heroin SA rats.41 The NAc consists of the NAc 
shell and NAc core subregion. Both subregions are part of neuronal 
circuits involved in distinctive process in the development of drug ad‐
diction.42‐44 Previous studies show that acute morphine or heroin injec‐
tion increased extracellular DA selectively in the NAc shell,45 while D1 
receptor blockade in the NAc shell but not in the NAc core impaired 
the acquisition of morphine‐induced CPP.20 In the drug SA paradigm, 
cognitive processes seem to drive long‐term genomic responses in 
the NAc shell, whereas the pharmacological actions of drugs of abuse 
(e.g., heroin) are mediated by the NAc core.46 Lecca et al also found 
that cocaine SA increased extracellular DA in the NAc shell signifi‐
cantly more than that in the NAc core.20 Moreover, optical stimulation 
of medium spiny neurons in the NAc shell could reinforce instrumen‐
tal response.47 Based on these findings, in the present study, we fo‐
cused only on the NAc shell but not the NAc core. One recent study 
also shows that DNMT3a2 expression in the NAc shell but not in the 
NAc core is involved in conditioned reinstatement and incubation of 
cocaine SA.48 Another interesting finding is that immediately after SA 
training, neither morphine SA nor saccharin SA affected the DNMT3a 
expression in the NAc shell. Previous studies show that cocaine SA al‐
ters the expression of DNMT in the NAc at 4 hours or later after the 
last cocaine injection.11,49 Anier et al13 reported that repeated cocaine 
injection did not cause an upregulation of DNMTs expression in the 
NAc at 1.5 hours after the last cocaine injection (Anier, Malinovskaja, 
Aonurm‐Helm et al., 2010). These findings suggest that the different 
drug classes and/or duration of drug exposure may influence how 
drugs of abuse may affect the DNMT3a in the NAc. 

Recent studies show that brain region‐specific DNA methylation 
plays an important role in drug‐related behaviors. Exposure to many 
drugs (cocaine, morphine, and methamphetamine) leads to DNA 
methylation, 11,49‐51 which is associated with transcriptional silenc‐
ing.52 Moreover, DNA methylation in the NAc is implicated in the reg‐
ulation of cocaine‐induced behavioral sensitization,13 incubation of 
craving,14 and reinstatement/incubation of cocaine SA.48 DNA meth‐
ylation in the sperm has an impact on the heritable cocaine‐seeking 
motivation. 15 Our own studies also show that inhibition of DNMTs in 
the hippocampal CA1 can block the acquisition and consolidation of 
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morphine/cocaine‐related reward memory and that DNA methylation 
in the prelimbic cortex is involved in the retrieval.16,17 Additionally, we 
found that the reconsolidation of morphine withdrawal memory was 
impaired by injection of a DNMT inhibitor into the agranular insular 
cortex or basolateral amygdala.53 Similarly, intra–basolateral amygdala 
infusion of the DNMTs inhibitor 5‐azacytidine hindered the recon‐
solidation of cocaine associated memory and then decreased subse‐
quent reinstatement induced by cues or drug priming.54 All these ev‐
idence suggests that DNA methylation in different brain regions are 
involved in different aspects and/or stages of drug addiction. This is 
also the reason that we chose to focus on the hippocampus CA1 and 
NAc but not other brain regions in the present study because they 
are involved in operant learning. 

In this study, we found hippocampal DNMT3a, but not DNMT3b, 
played an important role in the acquisition of morphine SA. We mi‐
croinjected DNMT inhibitor 5‐aza or RG108 into the CA1 and found 
that the acquisition of morphine SA was significantly suppressed (Fig‐
ures 4 and S2 and S3). These results are consistent with our previous 
finding showing that 5‐aza injected into the CA1 impaired the ac‐
quisition of cocaine‐induced and morphine‐induced CPP.16,17 We also 
found that DNMT3a but not DNMT3b was upregulated during the 
morphine SA, suggesting that DNMT3a but not DNMT3b is crucial 
in the acquisition of morphine SA. Because 5‐aza is a nonspecific in‐
hibitor to DNMTs, we thus used AAV‐DNMT3a to confirm the role of 
DNMT3a. Once again, knocking down DNMT3a in the CA1 was suf‐
ficient to inhibit the acquisition of morphine SA. This result suggests 
that DNMT3a is required for the acquisition of morphine SA via me‐
diating DNA methylation. The DNMT3a gene codes for two isoforms, 
DNMT3a1 and DNMT3a2.55 Recent studies showed that expression of 
DNMT3a2 but not that of DNMT3a1 is regulated by neuronal activ‐
ity in the hippocampus and that DNMT3a2 is required for the forma‐
tion and extinction of fear memory.56,57 On the other side, DNMT3a2 
but not DNMT3a1 in the NAc shell is required for cue‐induced rein‐
statement and incubation of cocaine seeking.48 Based on these stud‐
ies, we propose that DNMT3a2 but not DNMT3a1 may be required 
in the acquisition of morphine SA. Because neither the anti‐DNMT3a 
antibody (Abcam, ab188470) nor the shRNA of AAV‐DNMT3a used 
in the present study could distinguish between the DNMT3a1 and 
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DNMT3a2 isoforms, a series of experiments will be needed in the fu‐
ture. It is worth noting that the role of DNMT3a or DNMT3b in the 
regulation of addictive behavior or drug memory is still controversial. 
LaPlant et al11 found an up‐regulation of DNMT3a gene expression at 
4 hours and a downregulation at 24 hours after repeated cocaine ad‐
ministration, while DNMT3b expression did not change significantly.11 

However, Pol Bodetto et al58 reported that the DNMT3a expression 
and DNMT3b expression in rat CPu and PFCx were significantly up‐
regulated at different time points after chronic cocaine treatment.58 

Because we have not tested the expression of DNMT1, which is 
known to be involved in the maintenance of DNMTs,59 we cannot ex‐
clude the possible role of DNMT1 in the acquisition of morphine SA. 
Previous studies suggest that drug SA may not affect the expression 
of DNMT1, at least in the NAc. LaPlant et al11 reported that acute co‐
caine significantly reduced the expression of DNMT1; however, Dnmt1 
transcripts in the NAc were not significantly altered by chronic cocaine 
or cocaine SA.11 Similarly, Wright et al49 found that cocaine SA up‐reg‐
ulated the expression of Dnmt3a and Dnmt3b, but not DNMT1, in the 
NAc.49 Future research needs to address whether the expression of 
DNMT1 in the CA1 is altered after drug SA. 

Taken together, the present study demonstrates that DNMT3a in 
the CA1 region of the hippocampus play a key role in the acquisition 
of morphine‐specific operant conditioning. Therefore, targeting the 
DNMT3a overexpression in the CA1 may be a viable approach for the 
treatment morphine addiction. One advantage of this approach is that 
natural food‐seeking behaviors are less likely being affected, thus less 
likely to cause severe side effects.       
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Supplemental information:

Supplemental Experimental Procedures

Animals

Eight or nine weeks old male Sprague‐Dawley (SD) rats (Charles 
River, Beijing, China) were used: 37 rats entered the SA training, 2 
were excluded due to vein catheter blockade and 6 did not acquire 
saccharin SA; therefore 29 rats were considered for final data analy‐
sis. The experimental procedures were carried out according to the 
guideline provided by the Regulation for the Administration of Af‐
fairs Concerning Experimental Animals (China, 1988). The experimen‐
tal protocol was approved by Research Ethics Review Board of Insti‐
tute of Psychology, Chinese Academy of Sciences.

Microinjection of RG108

The DNA methyltransferase inhibitor N‐Phthalyl‐L‐Tryptophan 
(RG108, Sigma, St. Louis, MO, USA) was dissolved in 100% DMSO to 
a 2 μg/μl stock solution and then diluted 1:1 in 0.9% sterile saline to a 
final 1 μg/μl solution. Rats received bilateral microinjection of RG108 
(500 ng/side, 0.5 μl) to the hippocampal CA1 immediately before 
each morphine SA daily test session (Maddox, Watts & Schafe, 2014). 
The vehicle group received isovolumetric 50% DMSO in 0.9% sterile 
saline injection. Hamilton microsyringe (10 μl) and a syringe pump 
(RWD Life Science, Shenzhen, China) were used to deliver RG108 or 
vehicle. The injection rate was 0.25 μl/min over 2 min and then the 
injection needle remained in the guide cannula for another 2 min to 
prevent backflow. After injection, stainless plugs were put back into 
the guide cannula.

Statistical analysis

We used two‐way analysis of variance (ANOVA) to analyze the 
behavioral data and the Western blot data. The analysis of the nose‐
pokes data included the between‐subjects factor of nose‐poke 
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(active, inactive) and the within‐subjects factor of training day (7 
levels). The analysis of the %NPa data included the between‐sub‐
jects factor of treatment (RG108, Vehicle) and within‐subjects fac‐
tor of training day (7 levels). The analysis of the DNMTs expression 
data included the between‐subjects factor of treatment (naive, SA 
saccharin) and within‐subjects factor of training day (1 Day, 7 Day). 
Bonferroni post hoc analysis was performed after two‐way ANOVA 
if necessary. Statistical significance was set at P < 0.05. Data are ex‐
pressed as mean ± SEM and all statistical analyses were performed 
using GraphPad Prism version 6.00 for Windows.

Other methods

Please see the “MATERIALS AND METHODS” part.

Supplemental Experimental results

Figure S1. Three hours saccharin SA had no significant effect on the expression of 
DNMT3 in the CA1. (A). Rats received 3 hours saccharin SA daily for 7 days and ac‐
quired saccharin SA (nose‐poke factor: F1, 82 = 140.6, P < 0.001; nose‐poke × train‐
ing day interaction: F6, 82 = 3.86, P < 0.01; training day factor: F6, 82 = 2.08, P = 0.06, 
n = 6‐12). Post hoc comparisons revealed that rats poked the active hole signifi‐
cantly more than the inactive hole since the second day of training (P < 0.01). (B). 
Three hours saccharin SA training did not affect the expression of DNMT3a in the 
CA1 (treatment factor: F1, 19 = 0.07, P = 0.79; treatment × training day interaction: 
F1, 19 = 0.04, P = 0.84; training day factor: F1, 19 = 0.04, P = 0.84; n = 5‐6). (C). Three 
hours saccharin SA training did not affect the expression of DNMT3b in the CA1 
(treatment factor: F1, 18 = 0.33, P =0.57; treatment × training day interaction: F1, 18 = 
0.01, P = 0.94; training day factor: F1, 18 = 0.01, P = 0.94; n = 5‐6).
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Figure S2. Schematic representations of the RG108 intracranial cannula infusion 
sites in the hippocampal CA1. Numbers besides the sections indicate anteroposte‐
rior distance from bregma in millimeters. Data are reconstructed from Paxinos and 
Watson (2007).
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Figure S3. 
Microinjection of 
RG108 into the 
CA1 inhibited 
the acquisition of 
morphine SA. (A). 
For the vehicle 
group, two‐way 
repeated measures 
ANOVA revealed 
significant main 
effects of nose‐poke 
(F1, 16 = 84.48, P < 
0.001), training day 
factor (F6, 96 = 2.50, 
P < 0.05) and nose‐
poke × training day 
interaction (F6, 96 = 
7.27, P < 0.001). Post 
hoc comparisons 
revealed that there 
were more active 
nose‐pokes than 
inactive nose‐pokes 
since the second 
day (P < 0.01). (B). 
Microinjection of 
RG108 into the 
CA1 inhibited 
the acquisition of 
morphine SA (nose‐
poke: F1, 16 = 8.31, 
P < 0.05; nose‐
poke × training 
day interaction: 
F6, 96 = 1.55, P = 
0.17; training day 
factor: F6, 96 = 1.66, 
P = 0.14). Post hoc 
comparisons revealed that active nose‐pokes were more than inactive nose‐pokes 
only at the 7th training day (P < 0.01). (C). The %NPa of the RG108 group was less 
than the %NPa of the vehicle group (treatment factor: F1, 16 = 17.35, P < 0.001; 
treatment × training day interaction: F6, 96 = 1.46, P = 0.20; training day factor: F6, 

96 = 7.80, P < 0.001). Therefore, microinjection of RG108 into the CA1 inhibited 
the acquisition of morphine SA. Data are presented as mean ± SEM., n = 9, **P < 
0.01, ***P < 0.001 vs. inactive nose‐pokes; ###P < 0.001 vs. vehicle group.
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